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Abstract We analyze a competitive neural network model of perceptual rivalry that
receives time-varying inputs. Time-dependence of inputs can be discrete or smooth.
Spike frequency adaptation provides negative feedback that generates network oscil-
lations when inputs are constant in time. Oscillations that resemble perceptual rivalry
involve only one population being “ON” at a time, which represents the dominance
of a single percept at a time. As shown in Laing and Chow (J. Comput. Neurosci.
12(1):39–53, 2002), for sufficiently high contrast, one can derive relationships be-
tween dominance times and contrast that agree with Levelt’s propositions (Levelt in
On binocular rivalry, 1965). Time-dependent stimuli give rise to novel network oscil-
lations where both, one, or neither populations are “ON” at any given time. When a
single population receives an interrupted stimulus, the fundamental mode of behavior
we find is phase-locking, where the temporally driven population locks its state to the
stimulus. Other behaviors are analyzed as bifurcations from this forced oscillation,
using fast/slow analysis that exploits the slow timescale of adaptation. When both
populations receive time-varying input, we find mixtures of fusion and sole popula-
tion dominance, and we partition parameter space into particular oscillation types.
Finally, when a single population’s input contrast is smoothly varied in time, 1 : n

mode-locked states arise through period-adding bifurcations beyond phase-locking.
Our results provide several testable predictions for future psychophysical experiments
on perceptual rivalry.
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1 Introduction

Perceptual rivalry is the visual phenomenon that occurs when the brain alternates
between multiple interpretations of a visual stimulus. Binocular rivalry is the spe-
cific case where perception alternates back and forth between images presented
to both eyes (see Fig. 1a–b). Usually, images presented to induce rivalry main-
tain the same contrast throughout the duration of a single experiment (Levelt 1965;
Blake and Logothetis 2002). In this context, the durations of each percept or dom-
inance times last a few seconds each. However, there are studies that account for
effects of periodically interrupted stimuli (Orbach et al. 1963; Leopold et al. 2002;
Chen and He 2004; Noest et al. 2007; Pearson and Brascamp 2008) and stim-
uli with time-dependent contrast (Mueller and Blake 1989; Wilson et al. 2001;
Lankheet 2006; Kang et al. 2009). Dominance times can in fact increase from several
seconds to several minutes if stimuli are interrupted rapidly enough (Leopold et al.
2002; Brascamp et al. 2008). Psychophysical observations of experiments with time-
dependent stimuli significantly extend insight provided by investigations with static
images.

Relationships between stimulus contrast and dominance times in perceptual ri-
valry help determine the phenomenon’s neural substrates. A seminal study of binoc-
ular rivalry invoked by static stimuli led to four propositions developed by Levelt
(1965). Each proposition concerns an effect of altering the contrast of stimuli in sub-
sequent experiments, not during the course of a single experiment: (i) increasing the
contrast of one stimulus increases the proportion of time that stimulus is dominant;
(ii) increasing the contrast of one stimulus does not affect its average dominance

Fig. 1 Ambiguous visual inputs that generate perceptual rivalry. (a) Necker cube can be perceived as
having either square face in front. (b) Presenting orthogonal gratings to either eye generates binocular
rivalry. Decreasing static contrast of the left eye’s stimulus increases the dominance time of the right eye
percept and does not change that of the left eye percept, according to Levelt’s propositions (Levelt 1965).
(c) Interrupting both percepts in time can increase both percepts’ dominance times (Orbach et al. 1963;
Leopold et al. 2002; Noest et al. 2007). Specific cases of temporally varying a single percept’s contrast by
either (d) interrupting it or (e) smoothly changing it were studied in Mueller and Blake (1989), Laing and
Chow (2002)
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time; (iii) increasing contrast of one stimulus increases the rivalry alternation rate;
and (iv) increasing the contrast of both stimuli increases the rivalry alternation rate.
Propositions (i)–(iii) imply that increasing the contrast of one eye’s stimulus will de-
crease the dominance time of the other. Recent evidence suggests proposition (ii) may
only hold for high contrast stimuli (Bossink et al. 1993), and increasing one stimulus’
contrast affects the dominance time of the stronger stimulus (Brascamp et al. 2006;
Klink et al. 2008; Moreno-Bote et al. 2010). There are also recent observations
regarding dominance time dependence upon intermittently presented stimuli (see
Fig. 1c). Periodically interrupted ambiguous images can be perceived in the same
configuration several presentations in a row (Orbach et al. 1963; Leopold et al. 2002;
Blake et al. 2003; Pearson and Brascamp 2008), possibly due to recovery of adap-
tive processes in the interruption period (Brascamp et al. 2009). Switching seems
to not be noise-dominated, since rivalrous processes appear to have memory up to
several minutes (Leopold et al. 2002; Pearson and Brascamp 2008). In addition, the
periodic strengthening of contrast in the images of alternating eyes can provide a
means by which perception can actually lock to the time course of these stimulus
intensifications (Kang et al. 2009). Understanding the neural processes underlying
these kinds of effects could have implications for many aspects of visual process-
ing.

There are other complex dynamics that arise in perceptual rivalry experiments
that have yet to be fully mined for information about the visual system. It has
been shown that certain binocular stimuli can evoke four, rather than two, differ-
ent perceptual representations that include fusions of either eye’s image (Suzuki and
Grabowecky 2002). Only recently have perceptual rivalry experiments used novel
stimulus paradigms as a means of uncovering further information about the adap-
tive processes of the visual system (Brascamp et al. 2009; Webster 2011). Study-
ing complex perceptual dynamics in psychophysical experiments may provide clues
as to the relationship between visual channels for binocular rivalry and stereop-
sis (Wolfe 1986). In Buckthought et al. (2008), an examination of hysteresis be-
tween rivalrous behavior and fusion of binocular images quantified the critical stim-
ulus disparity necessary to generate rivalry. Such studies work toward maximiz-
ing the capability of noninvasive protocols for quantifying stereoscopic visual proc-
essing.

Mathematical models that describe perceptual rivalry commonly use multistable
neural competition where two populations have self-excitatory and mutually in-
hibitory connections (Wang and Rinzel 1992; Seely and Chow 2011). Switches in
population dominance occur through slow negative feedback processes commonly
implemented as synaptic depression and/or spike frequency adaptation. Synaptic
depression is the process by which synaptic resources such as neurotransmitters
and vesicles are exhausted due to continuous use (Abbott et al. 1997). Spike fre-
quency adaptation arises through a hyperpolarizing current that decreases a neu-
ron’s instantaneous firing rate (Benda and Herz 2003). Feedback causes switches
through either a release or escape mechanism (Wang and Rinzel 1992; Curtu et al.
2008). In release, the dominant population’s inhibition of the suppressed becomes
weak through its own negative feedback. In escape, the suppressed population over-
comes the dominant’s inhibition through its own recovery. Mutual inhibition mod-
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Fig. 2 Competitive neural network receiving time-dependent inputs IL and IR , described in the sys-
tem (1a)–(1d). Our paradigm allows for both or either input to the neural populations uL and uR to vary
in time. Self-excitation (black dots) has strength α; cross-inhibition (white squares) has strength β ; and
self-adaptation (white hexagons) has strength φ

els have grown to be considered a sufficient description of the basic mechanisms
involved in perceptual rivalry as they are successful in reproducing Levelt’s propo-
sitions (Laing and Chow 2002; Taylor et al. 2002; Wilson 2003; Shpiro et al. 2007;
Curtu et al. 2008; Seely and Chow 2011). Existing theoretical models of percep-
tual rivalry have been modified in ways to account for how interrupted stimuli
can lengthen effective dominance times (Leopold et al. 2002; Noest et al. 2007;
Brascamp et al. 2009). A common feature of these models is some slow adaptive
process that contains the memory of the previous percept orientation during periods
of stimulus interruption. In Gigante et al. (2009), a multistage stochastic model was
used to account for multiple peaks in the frequency distribution of dominance times
for stimuli with periodic ON and OFF epochs. These studies mostly examine the
case where the timescale of interruption is significantly shorter than the timescale of
percept switch. However, cases where the timescales of interruption and dominance
switching start to interact may be of interest as a further touchstone for the validity
of models of perceptual rivalry.

Thus, we seek to extend the present results on theoretical models of perceptual ri-
valry by examining the effects of various time-dependent stimuli on the behavior of a
mutual inhibitory network with slow adaptation (Fig. 2 and Sect. 2). We first analyze
several behaviors that arise in the model derived by Laing and Chow (2002) with
constant stimuli and show it can support various complex behaviors without time-
dependence in its inputs (Sect. 3). Then we examine effects of periodically varying a
single percept’s contrast (Sect. 4) and give conditions for a simple mode of behavior
where the population is dominant when its time-varying input is ON and suppressed
when its input is OFF. In addition, we explore a variety of more complex periodic
solutions that result as the timescale and amplitude of the stimulus is modified. Upon
varying both populations’ inputs simultaneously, we find many more new complex
modes of behavior (Sect. 5). Our analysis allows us to construct numerically ver-
ified diagrams that partition parameter space into these different complex modes.
Even when the stimulus is varied continuously in time (Sect. 6), rather than strobo-
scopically switched ON and OFF, our analysis accurately identifies different forms
of periodic solutions. By exploiting the fact that adaptation acts on a much slower
timescale than the membrane time course of neurons, we can derive several relation-
ships between physiologically meaningful model parameters and the behavior of the
competitive neural network.
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2 Neural Competition Model with Time-Dependent Stimuli

We analyze a competitive neural network that is driven by intermittent stimuli. A sim-
ilar model was derived in Laing and Chow (2002) from a spiking model with synap-
tic depression and spike frequency adaptation, reflecting deterministic dynamics of
perceptual rivalry, including most of Levelt’s propositions. We depart from previous
studies (Noest et al. 2007; Brascamp et al. 2009) by allowing the contrast of either or
both stimuli to vary in time. Therefore, we have a more general system of nonlinear,
nonautonomous differential equations

u̇L(t) = −uL(t) + H
(
αuL(t) − βuR(t) − aL(t) + IL(t)

)
, (1a)

u̇R(t) = −uR(t) + H
(
αuR(t) − βuL(t) − aR(t) + IR(t)

)
, (1b)

τ ȧL(t) = −aL(t) + φH
(
αuL(t) − βuR(t) − aL(t) + IL(t)

)
, (1c)

τ ȧR(t) = −aR(t) + φH
(
αuR(t) − βuL(t) − aR(t) + IR(t)

)
, (1d)

where time-dependent inputs take the form

Ij (t) = ΔI · I (t), j = L,R,

and constant inputs are simply Ij (t) = Ij (j = L,R) for all t .
Here, uL and uR represent the mean firing rate of the left and the right eye popu-

lations, respectively, with excitatory connection strength α and cross-inhibitory con-
nection strength β , evolving according to (1a) and (1b). The slow negative feedback
process responsible for dominance switches is spike frequency adaptation, whose
variables are defined in (1c) and (1d) with strength φ and time constant τ , and we
assume τ � 1 for our analysis. Our analysis could proceed similarly for system that
also includes synaptic depression with sufficiently slow timescale (Laing and Chow
2002). However, adaptation alone can capture qualitative behaviors of perceptual ri-
valry and affords us a more transparent analysis.

The gain function H , which converts inputs to each neural population to an output
firing rate, is taken to be a Heaviside function (Amari 1977; Laing and Chow 2002)

H(x) =
{

1 : x ≥ 0,

0 : x < 0.
(2)

This idealization is often used in neural field models, to ease analytical studies of
their dynamics. Seely and Chow recently studied the effects of a variety of firing rate
functions upon dominance durations in related mutual inhibitory models (Seely and
Chow 2011). We have also performed numerical simulations of our model (1a)–(1d)
for a smooth sigmoidal firing rate function (not shown), and they correspond to the
results we present here for sufficiently high gain as in Kilpatrick and Bressloff (2010).

The maximal value of the time-dependent inputs to each neural population will
be ΔI and the minimum will be zero. For the majority of our analysis, we include
time-dependence using the discontinuous step input

I (t) = H

(
sin

(
πt

TI

))
, (3)
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since experiments that motivate this study usually employ time-dependent stimuli
whose contrast changes sharply in time (Leopold et al. 2002; Noest et al. 2007). How-
ever, we also make novel predictions regarding time-dependent changes of smoothly-
varying perceptual inputs

I (t) = 1

2

(
sin

(
πt

TI

)
+ 1

)
, (4)

for which we can carry out some analysis determining periodic solutions that result
in the network (1a)–(1d) in Sect. 6.

The model we use examines the effects that various time-dependent ambiguous
stimuli have on the networks that are neural substrates of perceptual rivalry. In par-
ticular, the psychophysical experiments suggested by this theoretical work would be
best carried out for binocular rivalry specifically. This is because stimuli that invoke
other forms of perceptual rivalry, such as the Necker cube (Orbach et al. 1963) or the
rotating sphere (Noest et al. 2007), cannot have the contrast of only a single percept
altered so easily. Therefore, we consider the indices j = L and j = R as correspond-
ing to neural populations encoding inputs to the left and right eye. We also note that
rivalrous oscillations are known to be quite noisy (Brascamp et al. 2006), so our re-
sults should be interpreted as the mean of dominance times, influenced by the param-
eters of an underlying adaptive process (Lankheet 2006; Pearson and Brascamp 2008;
van Ee 2011). Conceivably, we could also include noise in this model and formulate
dominance switches as a first passage time problem (Moreno-Bote et al. 2007).

Analysis of our model departs from recent work on interrupted ambiguous stimuli
in a few ways. First, we extensively analyze the effects of varying the strength of an
input to a single population and find a fundamental mode of behavior, which we call
phase-locking. Second, we use singular perturbation theory to perform a fast/slow
analysis of the oscillatory states of (1a)–(1d) and predict many different complex
types of behavior due to time-dependent stimuli. Finally, the terms that we use to
represent spike frequency adaptation are more physiologically realistic than those
presented in the models of Noest et al. (2007), Brascamp et al. (2009). The form of
spike frequency adaptation included in (1a)–(1d) was derived from a spiking network
in Laing and Chow (2002) and arises from an averaging calculation for a spiking
neuron with a hyperpolarizing current in Benda and Herz (2003).

3 Constant Input

In this section, we examine some of the behaviors of the network (1a)–(1d) in the
presence of constant input so that Ij (t) = Ij for j = L,R. This will give simplified
examples of the approach we use to calculate parameter region boundaries of com-
plex behaviors in Sects. 4 and 5. In Laing and Chow (2002), a fast/slow analysis was
used to approximate the relationship between dominance times and model parame-
ters in the case of an escape mechanism. Here, we examine formulae for the release
mechanism and switching brought about by combinations of release and escape.

The model (1a)–(1d) has several equilibria, as discussed by Laing and Chow
(2002), depending upon the choice of parameters. When IL, IR < 0, the equilib-
rium uL = uR = 0 exists, referred to as both OFF. When α − β + IL > φ and
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α − β + IR > φ, an equilibrium where uL = uR = 1 exists, referred to as both ON.
When α + Ij > φ and Ik − β < 0 (where j = L or R, and k �= j ), an equilibrium
where uj = 1 and uk = 0 exists, referred to as a winner take all (WTA) solution. Psy-
chophysically, this corresponds to indefinite dominance of a single percept. When
no equilibria exist, the system (1a)–(1d) supports oscillations, which can be gen-
erated via either release or escape (Shpiro et al. 2007). Release occurs for lower
strength inputs and results in oscillations whose dominance times increase as the
input is increased. In a complementary way, escape occurs for higher strength in-
puts and associated dominance times decrease as input strength increases, match-
ing Levelt proposition (iv) (Levelt 1965; Shpiro et al. 2007; Curtu et al. 2008;
Kilpatrick and Bressloff 2010; Seely and Chow 2011). We derive formulae for domi-
nance times in the case of release. Despite the relations not corresponding with Lev-
elt proposition (iv), the analysis will be an instructive prequel to our study of time-
dependent inputs, where we see both release and escape mechanisms.

We exploit the fact that adaptation acts more slowly (τ � 1) than population ac-
tivity, so uj ≈ 0 or 1 for j = L,R, except when a switch in dominance occurs. This
decouples the differential equations for uj from those for aj , everywhere except the
boundary layers, allowing us to understand the system (1a)–(1d) by analyzing the
slow subsystem

uL(t) = H
(
αuL(t) − βuR(t) − aL(t) + IL

)
,

uR(t) = H
(
αuR(t) − βuL(t) − aR(t) + IR

)
, (5)

τ ȧL(t) = −aL(t) + φHL, τ ȧR(t) = −aR(t) + φHR,

where Hj = 1 if the j th population is ON and Hj = 0 if the j th population is OFF
(j = L,R). We will use a fast/slow convention extensively throughout this work to
draw insightful connections between the model’s parameters and behaviors.

3.1 Release and Escape Rivalry

We proceed by assuming oscillations where a switch is generated by the release
of the suppressed population. Beginning with the initial condition uL(0+) ≈ 1 and
uR(0+) ≈ 0 immediately after a switch in dominance, the left population remains
dominant for a period of time TL. The switch in dominance occurs when the left pop-
ulation input falls below zero at IL + α − aL(TL) = 0 (as in Fig. 3a). Solving (5) for
the left population’s adaptation variable yields

aL = φ − (
φ − aL(0)

)
e−t/τ , t ∈ (0, TL).

We can also solve (5) to compute aL in the case that the left population is suppressed

aL = aL(TL)e(TL−t)/τ , t ∈ (TL,TL + TR).

Using the threshold condition for left and right release, we have

aL(TL) = IL + α, aL(TL + TR) = (IL + α)e−TR/τ .
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Fig. 3 Rivalry oscillations occurring due to release mechanism. (a) Plots of all model (1a)–(1d) variables
for IL(t) = IR(t) = 0.2, during release of the left population. Notice the boundary layer formed by the fast
relaxation dynamics of uL,uR . (b) Dominance times for the left (solid) and right (dashed) populations
when the right input is fixed at IR(t) = 0.2 and IL(t) = IL is constant in time. Other parameters are
α = 0.2, β = 0.5, φ = 0.5, τ = 50

Assuming periodicity of both variables, we find

IL + α = φ − (
φ − (IL + α)e−TR/τ

)
e−TL/τ ,

IR + α = φ − (
φ − (IR + α)e−TL/τ

)
e−TR/τ .

Solving these two equations, we obtain explicit formulae for the dominance times

TL = τ ln

(
IR + α

φ − IL − α

)
, (6)

TR = τ ln

(
IL + α

φ − IR − α

)
. (7)

Foreshadowing our bifurcation analysis for time-dependent inputs, we also note that
the input parameter region for which release rivalry exists is given by the inequalities
0 < IL,R < φ − α and φ − 2α < IL + IR . We plot the dominance times as a function
of the left input in Fig. 3b. Notice, dominance times increase with input strength,
contrary to the assertions of Levelt’s proposition (iv). Since release occurs for lower
contrast inputs, this may suggest that mutual inhibitory network descriptions of per-
ceptual rivalry are only valid for sufficiently high contrast inputs (Shpiro et al. 2007).

When rivalrous oscillations are generated by an escape mechanism (see Fig. 4a),
dominance times decrease as input strength increases. To compare with (6) and (7),
we also present the formulae previously derived for dominance times generated by
escape (Laing and Chow 2002)

TL = τ ln

(
β + φ − IL

IR − β

)
, (8)

TR = τ ln

(
β + φ − IR

IL − β

)
, (9)
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Fig. 4 Rivalry oscillations occurring due to escape mechanism. (a) Plots of all model (1a)–(1d) variables
for IL(t) = IR(t) = 0.6, during the escape of right population. (b) Dominance times for the left (solid)
and right (dashed) populations when the right input is fixed at IR(t) = 0.6 and IL(t) = IL is constant in
time. Other parameters are α = 0.2, β = 0.5, φ = 0.5, τ = 50

when inputs satisfy β < IL,R < β + φ and IL + IR < 2β + φ. While dominance
times for escape oscillations depend upon the cross-inhibitory strength β , those for
release oscillations depend upon self-excitatory strength α. Dominance times de-
crease as input strength is increased (Fig. 4b), so escape oscillations better cor-
respond behaviorally to Levelt’s propositions (Levelt 1965; Shpiro et al. 2007;
Seely and Chow 2011). This suggests that neural substrates of perceptual rivalry may
depend more on the strength of cross-inhibitory connections (Blake 1989).

3.2 Single-Population Oscillations

We now describe solutions whereby a single population switches between being ON
and OFF, regardless of the state of the other population. There is evidence that the
brain’s visual areas can experience hysteresis between stereopsis and binocular ri-
valry, which suggests complex dynamics beyond rivalry are possible (Fender and
Julesz 1967; Suzuki and Grabowecky 2002; Buckthought et al. 2008). Since visual
pathways for binocular rivalry and stereoscopic vision appear to be interwoven (Har-
rad et al. 1994), it would be valuable to see how percepts like the fusion of visual
inputs are reconciled with rivalrous perception.

First, we study dynamics where the right population is ON indefinitely, and the
left population switches between being ON and OFF (see Fig. 5a). We refer to the
ON and OFF dominance times as TN and TF . Assuming the left population turns ON
at t = 0, the left adaptation variable satisfies

aL(TN) = φ(1 − e−TN/τ )

1 − e(−TF −TN )/τ
, aL(0) = φ(e−TF /τ − e−TN−TF )

1 − e(−TN−TF )/τ
.

Upon applying the threshold conditions aL(TN) = IL + α − β and aL(0) = IL − β ,
we have formulae for the ON and OFF time of the left population

TN = τ ln

(
β + φ − IL

β + φ − IL − α

)
,
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Fig. 5 Left population oscillates while the right population remains ON. (a) Plots of all model (1a)–(1d)
variables with constant inputs IR = 1.1 and IL = 0.6. (b) Plots of amount of time left population spends
ON (TN ) and OFF (TF ), where IR = 1.1 and IL(t) = IL is constant in time. Other parameters are α = 0.2,
β = 0.5, τ = 50, and φ = 0.5

TF = τ ln

(
IL + α − β

IL − β

)
.

For this state to exist, input parameters must satisfy β < IL < β + φ − α and IR >

β+φ−α. We plot the dominance and suppression times as a function of IL in Fig. 5b.
As the left input increases, the OFF time decreases and the ON time increases.

In a similar way, we examine the ON and OFF times of a left population oscillation
when the right population is OFF indefinitely to find

TN = τ ln

(
φ − IL

φ − IL − α

)
,

TF = τ ln

(
IL + α

IL

)
,

where input parameters must satisfy 0 < IL < φ − α and IR < 0. Notice, there is
no dependence upon the cross-inhibition parameter β in this case. The solutions we
find suggest that a single population’s adaptation may have the capacity to switch
percepts ON and OFF, without the need for cross-inhibition. Network oscillations
between sole dominance of a single percept and a fusion state may arise when one
input’s contrast is substantially stronger than the other.

Finally, we show a case where the left and right populations become active in
succession, followed by a period in which both populations are OFF (see Fig. 6a). To
solve for the switching times, we refer to the left and right populations’ dominance
times as TL and TR and the time both are simultaneously OFF as TF . We can solve
for approximations of the adaptation variables and derive an implicit system for the
switching times

IR + α = φ −
(

φ − φ(e(−TF −TL)/τ − e(−TL−TF −TR)/τ )

1 − e(−TL−TF −TR)/τ

)
e−TR/τ ,
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Fig. 6 Rivalrous oscillation accompanied by a punctuating OFF period. Orbit has a total period of
TL + TR + TF . (a) Plots of all model (1a)–(1d) variables for IL = 0.05 and IR = 0.1. (b) Plot of the
switching times for IR(t) = 0.1 and IL(t) = IL is constant in time. Other parameters are α = 0.2, β = 0.5,
τ = 50, and φ = 0.5

IL =
(

φ(1 − e(−TL)/τ )

1 − e(−TF −TR)/τ

)
e(−TR−TF )/τ ,

IL + α = φ −
(

φ − φ(e(−TF −TR)/τ − e(−TL−TF −TR)/τ )

1 − e(−TL−TF −TR)/τ

)
e−TL/τ .

Dominance times determined using numerical root finding are plotted as functions
of the left input in Fig. 6b. For this behavior to exist, inputs need to be substantially
weak. A complementary behavior exists where rivalry combines with both popula-
tions being ON simultaneously for substantially strong inputs.

Thus, we show alternative dynamics to pure rivalry can exist, even when inputs
are constant in (1a)–(1d). Perturbative fast/slow timescale approximations adequately
predict the switching times of these more intricate behaviors. Similar techniques to
those used for static inputs can also be applied to cases where inputs are varied in
time.

4 Time-Variation in Single Input

We now analyze the effects of varying one population’s input in time IL(t), while
keeping the other input IR constant. Assuming the step input (3), we can perform a
fast/slow analysis on the model (1a)–(1d) to identify different modes of behavior. Our
analysis allows several new qualitative predictions regarding the effects of varying the
contrast of a single eye’s input in binocular rivalry experiments.

4.1 Phase-Locked Behavior

We first characterize a mode of behavior we call the phase-locked state (see Fig. 7a).
When the left input is ON (IL(t) = ΔI ), we assume the left population is ON and the
right is OFF. When the left input is OFF (IL(t) = 0), the right population is ON and
the left is OFF. As defined by the input function, durations of either percept are TI
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Fig. 7 Various periodic solutions to the system (1a)–(1d) with a single time dependent step input (3).
(a) Phase-locking (Ph) of left population to stimulus (ΔI = 0.8 and TI = 50). (b) Early escape of the right
population (RE) to a switch in dominance (ΔI = 0.6 and TI = 120). (c) Escape of right population to a
fusion (EF) ON state (ΔI = 0.8 and TI = 100). (d) Left population fails to switch ON (LF) immediately
with stimulus (ΔI = 0.55 and TI = 60). Other parameters are α = 0.2, β = 0.5, τ = 50, φ = 0.5, IR = 0.6

each. Since switching is entirely induced by the time-dependence of the input here,
adaptation variables do not affect the time duration of population activity. However,
there are inequalities involving the adaptation variables that must be satisfied in order
for the phase-locked state to exist.

We now derive the set of inequalities that must be satisfied in the phase-locked
state. Assuming that the system starts at t = 0 with the input IL(t) just switching
ON, so the left population uL ≈ 1 and the right population uR ≈ 0, we have the two
inequalities

α + ΔI > aL(t) and −β + IR < aR(t), t ∈ (0, TI ),

involving the inputs to the left and right population. Since switching must be entirely
accomplished by the time-dependent input, we require no release occurs for the left
population

α + ΔI > aL(TI ) = φ − (
φ − aL(0)

)
e−TI /τ ,

and no escape occurs for the right population

IR − β < aR(TI ) = aR(0)e−TI /τ .
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Now we derive two similar inequalities for the second part of the oscillation, when
IL(t) = 0. At the beginning, the left population should switch OFF

α < aL(TI ) = φ − (
φ − aL(0)

)
e−TI /τ ,

and the right population should switch ON immediately after

IR > aR(TI ) = aR(0)e−TI /τ .

For the time period from t = TI to t = 2TI , the states of each population must not
change and the left population will certainly not escape since

−β < 0 < aL(t), t ∈ (TI ,2TI ),

is always true, and the right population must not release

α + IR > aR(t), t ∈ (TI ,2TI ).

Since both populations remain ON and OFF for equal lengths of time, phase-
shifted one half-period from one another, their adaptation variables have the same
time-course, up to a half-period shift. Thus, we note periodicity aL(0) = aL(2TI )

and the value of aL at the end of the ON and OFF phases by

aL(TI ) = φ − (
φ − aL(0)

)
e−TI /τ ,

aL(2TI ) = φe−TI /τ − (
φ − aL(0)

)
e−2TI /τ .

We can solve for the initial values of the left and right adaptation variables

aL(0) = φ(e−TI /τ − e−2TI /τ )

1 − e−2TI /τ
, aR(0) = φ(1 − e−TI /τ )

1 − e−2TI /τ
.

Including these expressions in the inequalities derived and simplifying, we have
seven restrictions on the parameter space in which phase-locking can occur, based on
requirements of left (L) and right (R) population dynamics:

(Ph-i) No release of L: α + ΔI >
φ

1 + e−TI /τ
,

(Ph-ii) No escape of R: IR − β <
φ

1 + eTI /τ
,

(Ph-iii) L switching OFF: α <
φ

1 + e−TI /τ
,

(Ph-iv) R switching ON: IR >
φ

1 + eTI /τ
,

(Ph-v) No release of R: IR + α >
φ

1 + e−TI /τ
,

(Ph-vi) L switching ON: −β + ΔI >
φ

1 + eTI /τ
,
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(Ph-vii) R switching OFF: IR + α − β <
φ

1 + e−TI /τ
.

For weak alternating inputs ΔI , the left population will not switch ON every time
the input IL switches to a high state. For long half-periods TI , the right population
will start to release or escape during the period of assumed right or left dominance.
By simply varying the form of input to the network, we can study new dynamics
of population activity that emerges once phase-locking breaks down. These periodic
solutions involve the release and escape of either population, rather than simple input-
induced switching ON and OFF. It is also possible for the network to fail to lock to
the time-varying stimulus in the 1 : 1 fashion that is clear in phase-locking, leading to
other 1 : n mode-locked states. Further analysis allows us to relate stimulus parame-
ters to complex behaviors of the competitive neural network.

4.2 Escape by Right Population

For long stimulus periods, the left population’s dominance time can be cut short by
the escape of the right population (see Fig. 7b). Analysis follows along the same
lines as the derivation of phase-locked parameter inequalities, but now we derive
an expression for the right population’s escape time TR . Here, the left population
switches ON at t = 0 but will be switched OFF at t ≈ TR where

IR − β = aR(TR) = φ(e−TR/τ − e−2TI /τ )

1 − e−2TI /τ
,

meaning we can solve explicitly for the right population’s escape time

TR = τ log

(
φ

(IR − β)(1 − e−2TI /τ ) + φe−2TI /τ

)
. (10)

After a similar series of calculations to the phase-locked case, we can express the
inequalities that constrain parameters for right escape (RE) to exist:

(RE-i) No Release of L: ΔI + α > β − IR + φ,

(RE-ii) Escape of R: IR − β >
φ

1 + eTI /τ
,

(RE-iii) L switches OFF: ΔI + α − β < β − IR + φ,

(RE-iv) No Release of R: IR + α >
φe2TI /τ (IR − β)

(IR − β)(e2TI /τ − 1) + φ
,

(RE-v) L switches ON: ΔI − β >
φ(β − IR + φ)

(IR − β)(e2TI /τ − 1) + φ
,

(RE-vi) R switches OFF: IR + α − β <
φ(IR − β)e2TI /τ

(IR − β)(e2TI /τ − 1) + φ
.

We use these inequalities in generating Fig. 9 at the end of this section, exhibiting the
partitioning of parameter space into different types of behavior.
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4.3 Escape to Fusion

A further variation on simple phase-locked behavior includes a period in which both
populations are either ON or OFF at the same time. Psychophysically, this would
correspond to the dominance of both (fusion of two) or neither percepts for a notice-
able time window. Such behavior may be a time-dependent version of the hysteresis
observed in experiments where the orientation difference between binocular images
is slowly changed (Buckthought et al. 2008).

We show a behavior where the left population is still locked to the input of the
stimulus, but the right population switches ON (see Fig. 7c). Here, the left population
starts out dominant and the right population suppressed. Then, the right population
switches ON and a fusion period begins at the time TR given by the expression (10).
At t = TI , the left population switches OFF along with the stimulus. Finally, at t =
2TI , the left population turns ON and suppresses the right population, completing the
periodic solution. Using a fast/slow analysis, we derive the following inequalities:

(EF-i) No Release of L: ΔI + α − β >
φ

1 + e−TI /τ
,

(EF-ii) No Release of R while L is ON:

IR + α − β >
φ[(IR − β)(e2TI /τ + eTI /τ − 1) + φ − φeTI /τ ]

(IR − β)(e2TI /τ − 1) + φ
,

(EF-iii) L switches OFF: α − β <
φ

1 + e−TI /τ
,

(EF-iv) No Release of R while L is OFF:

IR + α >
φ(IR − β)e2TI /τ

(IR − β)(e2TI /τ − 1) + φ
,

(EF-v) L switches ON: ΔI − β >
φ

1 + eTI /τ
,

(EF-vi) R switches OFF: IR + α − β <
φ(IR − β)e2TI /τ

(IR − β)(e2TI /τ − 1) + φ
.

Combinations of fusion and rivalry in periodic solutions of competitive neural
networks have seldom been studied, but there is experimental evidence for these types
of dynamics. Periodic perturbations of spatially structured binocular rivalry stimuli
have been shown to create periods of “mixed dominance” where the two percepts
fuse together in between one percept and the other being dominant (Kang et al. 2009),
suggesting visual streams for stereoscopy and rivalry may be the same.

4.4 Left Fails to Switch ON

It is also possible that the left population may cease to lock to the stimulus state by
failing to switch ON when the stimulus switches ON. The right population remains
in dominance for longer than a half stimulus period TI (Fig. 7d). The inequality (Ph-
vi) breaks down here, and there are different dominance times for the left and right
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Fig. 8 Cycle skipping generates 1 : n mode-locked solutions in network (1a)–(1d) with left input inter-
rupted in time where (a) n = 2 for ΔI = 0.54 and TI = 50 and (b) n = 3 for ΔI = 0.52 and TI = 30.
Other parameters are α = 0.2, β = 0.5, φ = 0.5, τ = 50, IR = 0.6

population. The left population escapes at t = TL, so the right population stays on
for TI + TL and the left stays ON for TI − TL. Computing the form of the adaptation
variables, we produce the following set of inequalities, bounding parameter space in
which this behavior exists:

(LF-i) No Release of R: IR + α > β − ΔI + φ,

(LF-ii) R switches OFF: IR + α − β < β − ΔI + φ,

(LF-iii) No Release of L: ΔI + α >
φ(ΔI − β)e2TI /τ

(ΔI − β)(e2TI /τ − 1) + φ
,

(LF-iv) L switches OFF: α <
φ(ΔI − β)e2TI /τ

(ΔI − β)(e2TI /τ − 1) + φ
,

(LF-v) R switches ON: IR >
φ(φ − ΔI + β)

(ΔI − β)(e2TI /τ − 1) + φ
.

Failure of the left population to switch ON with the stimulus indicates the system
can slip from the stimulus time course, though there is still a 1 : 1 correspondence
between the network period and the stimulus period. Now, we examine how 1 : n

mode-locked solutions arise when the left population fails to switch ON during every
other stimulus-ON epoch.

4.5 Mode-Locking Through Cycle Skipping

We now explicitly compute the parameter space boundaries of 1 : 2 mode-locking
that arise through cycle skipping (see Fig. 8a). For weak input amplitudes ΔI or short
time scales TI , the left population’s adaptation does not recover enough during stim-
ulus interruptions for phase-locking to occur. Once the stimulus is turned ON again,
the left population does not turn ON at all. As behavior moves away from pure phase-
locking, 1 : 2 mode-locking can arise as a solution where the network completes one
period for every two stimulus periods. In the case of 1 : 2 mode-locking, where each
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Fig. 9 Partitioning of single
time-variant input parameter
space (TI , ΔI ) into different
dynamical behaviors:
phase-locked; R escape/fusion;
fusion followed by left OFF
(fus/L OFF); right escape; left
switching ON fails; (1 : 2)
mode-locked solutions; 1 : n
mode-locked solutions (m); and
right ON left OFF indefinitely.
Other parameters are α = 0.2,
β = 0.5, φ = 0.5, τ = 50,
IR = 0.6

left ON epoch lasts TI , the right population is ON for a duration of 3TI , suppressing
the left population in the meantime. There are other 1 : 2 mode-locked solutions, but
we summarize the parameter space boundaries associated with this straightforward
case here. Parameter inequalities associated with this solution are:

(1 : 2-i) No Release of L: ΔI + α >
φ

(1 + e−TI /τ )(1 + e−2TI /τ )
,

(1 : 2-ii) L switches OFF: α <
φ

(1 + e−TI /τ )(1 + e−2TI /τ )
,

(1 : 2-iii) No Release of R: IR + α >
φ(1 − e−3TI /τ )

1 − e−4TI /τ
,

(1 : 2-iv) No Escape of L: ΔI − β <
φ

(1 + e−TI /τ )(1 + e2TI /τ )
,

(1 : 2-v) L switches ON: ΔI − β >
φ

(1 + eTI /τ )(1 + e2TI /τ )
.

Beyond 1 : 2 mode-locked solutions, if the input ΔI is even weaker, or the input
timescale TI shorter, there are 1 : n mode-locked solutions where n > 2 for n ∈ Z

+.
For example, in Fig. 8b, a 1 : 3 mode-locked solution is shown, where the left pop-
ulation turns ON every third stimulus presentation. We could similarly extend the
inequalities presented here to provide bounds on the existence of 1 : n mode-locked
solutions for n > 2. We summarize these behaviors in our partitioning of parameter
space by noting where these multiple cycle skips appear.

4.6 Partition of Parameter Space

Now, we can use our accumulated bounds to display the resulting partition of param-
eter space (TI , ΔI ) into a variety of different behaviors. We show this partitioning
in Fig. 9. The primary behavior of phase-locking occurs for sufficiently high contrast
ΔI and brief enough duration TI . This prediction is intuitive, since an observer would
likely discern the higher contrast of two percepts prior to the dynamics of adaptation
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generating a switch (Blake and Logothetis 2002). For a long timescale of periodic
image presentation, the right population (percept) appears through either early fusion
or dominance while the left image is still ON. For weak stimuli, the left percept does
not switch ON immediately with its input. As the stimulus amplitude is weakened
further or the input period is lessened, this effect becomes more pronounced. This
can even lead to the left percept skipping one or multiple stimulus epochs as shown
in the region of 1 : n mode-locked solutions, (1:2) and (m) respectively.

Many qualitatively new behaviors emerge as we temporally vary the left input
that could correspond to complex perceptual states that emerge when the stimulus is
presented intermittently over time to an observer. We now proceed to examine some
more qualitatively different behaviors that emerge from the system when we vary
both inputs over time.

5 Time-Variation in Both Inputs

Several authors have examined the effect of simultaneously switching both inputs ON
and OFF in a competitive neural network (Noest et al. 2007; Brascamp et al. 2009;
Gigante et al. 2009), in an attempt to understand how interrupted stimuli allow a
single percept to remain in dominance for longer (Orbach et al. 1963; Leopold et
al. 2002; Blake et al. 2003; Chen and He 2004). They did not probe more complex
dynamics, which we study here. Exploiting a fast/slow analysis, we can partition pa-
rameter space, in a similar way to the single input varied case of Sect. 4, into different
dynamical behaviors. We assume both inputs vary in the same way, according to the
stepwise input (3).

5.1 Phase-Locked ON/OFF Oscillation

The simplest possible periodic solution is one where both populations turn ON and
OFF together, with the input (see Fig. 10a). Activity variables should then be identi-
cal, as should the adaptation variables. Performing a fast/slow analysis, we arrive at
the same expression for both adaptation variables here as in the phase-locked case for
the single varied input

aj (0) = aj (2TI ) = φ

1 + eTI /τ
and aj (TI ) = φ

1 + e−TI /τ
, j = L,R.

Now, we require that neither population escapes or releases and that they are only
switched ON and OFF by changes in the input’s state. These requirements, along with
the formulae for the adaptation variables yield four inequalities, restricting parameter
space for this solution:

(OF-i) No Release: ΔI + α − β >
φ

1 + e−TI /τ
,

(OF-ii) Switching OFF: α − β <
φ

1 + e−TI /τ
,
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Fig. 10 Various periodic behaviors of the system (1a)–(1d) when both inputs IL(t), IR(t) are the periodic
step (3). (a) Phase-locked ON/OFF oscillation where both populations lock to time-dependent stimulus
(ΔI = 0.8 and TI = 50). (b) Rivalry/fusion oscillation where both populations turn ON with the stimu-
lus, and there is an alternation in the population that releases each stimulus presentation (ΔI = 0.6 and
TI = 50). (c) Dominance switching where there are multiple alternations in dominance with each stim-
ulus presentation (ΔI = 0.6 and TI = 120). (d) Rivalry where dominance switches after each stimulus
interruption (ΔI = 0.2 and TI = 50). Other parameters are α = 0.2, β = 0.5, φ = 0.5, τ = 50

(OF-iii) No Escape: 0 <
φ

1 + eTI /τ
,

(OF-iv) Switching ON: ΔI >
φ

1 + eTI /τ
.

Inequality (iii) is always satisfied, since φ must be positive. Existence of this phase-
locked ON/OFF oscillation is then determined by three inequalities that restrict pa-
rameter space. We will use these to build a diagram of parameter space at the conclu-
sion of this section (Fig. 11). Now, we turn to studying rivalrous behavior.

5.2 Rivalry/Fusion

To study more intricate dynamics, different from that found in previous work, we
examine half-periods TI commensurate with the adaptation time constant τ . Note, we
also restrict the OFF period of the stimulus to be the same as the ON period, which
is unlike protocols that generate stabilization, since they usually require a longer
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Fig. 11 Partitioning of the
parameter space of input
parameters (TI , ΔI ) into
various behaviors, when both
populations are driven by
time-dependent input. The
derivation of a boundary is given
in the subsection corresponding
to the behavior it borders. Other
parameters are α = 0.2, β = 0.5,
τ = 50, and φ = 0.5

OFF period (Leopold et al. 2002; Blake et al. 2003; Noest et al. 2007). The first
periodic solution we examine is one where both populations are ON for a window
of time, a fusion state, followed by one population releasing (see Fig. 10b), due to a
breakdown in inequality (OF-i). Then, there is an alternation in the solely dominant
population from one stimulus period to the next, making this a period-two oscillation.
This can occur for inputs with long half-periods TI or weak amplitudes ΔI . Due to
the underlying reflection symmetry of the system, we can assume identical switching
times for either population.

Thus, we derive the set of inequalities that must be satisfied in this fusion/rivalry
state. Assuming the system starts at t = 0 with the input I (t) just switching ON,
causing both populations to turn ON, we have the following inequalities

ΔI > aL(0) and α − β + ΔI > aR(0),

assuming the left population will switch ON slightly before the right. Now, we pick
the right population as the first to release at the time TS . This generates the inequality
and equality

α − β + ΔI > aL(TS) and α − β + ΔI = aR(TS).

In addition, we require that the right and left populations remain subthreshold and
superthreshold, respectively, while the input is ON so that

α + ΔI > aL(TI ) and − β + ΔI < aR(TI ).

When the input switches OFF, there is the additional requirement that the left pop-
ulation switches OFF, α < aL(TI ). A similar series of events occurs once the stim-
ulus turns ON again, with the roles of the left and right populations reversed. This
yields a set of conditions that does not add new information to the parameter space
restriction, due to the system’s symmetry. Based on this series of events, we can
derive expressions for both adaptation variables, which have the same time course
up to a 2TI time shift. We can thus specify both adaptation variables by solving
the piecewise-linear differential equations, imposing periodic boundary conditions
(aj (0) = aj (4TI ); j = L,R), and the relation aR(t) = aL(t + 2TI ). Plugging these
values into our set of inequalities, we have:
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(RF-i) L (R) switches ON

ΔI >
φe−2TI /τ (1 − e−TI /τ + e−2TI /τ )

φ+β−α−ΔI
α−β+ΔI

+ e−4TI /τ
,

(RF-ii) R (L) switches ON

α − β + ΔI >
φ

φ+β−α−ΔI
α−β+ΔI

(e−TI /τ − e−2TI /τ ) + φe−4TI /τ

φ+β−α−ΔI
α−β+ΔI

+ e−4TI /τ
,

(RF-iii) No release of L (R)

α − β + ΔI >
(α − β + ΔI)(1 + e−2TI /τ − e−3TI /τ ) + φ(e−TI /τ − e−2TI /τ )

1 − e−TI /τ + e−2TI /τ
,

(RF-iv) No release of L (R)

α + ΔI >
φ

φ+β−α−ΔI
α−β+ΔI

(1 − e−TI /τ ) + φe−3TI /τ

φ+β−α−ΔI
α−β+ΔI

+ e−4TI /τ
,

(RF-v) No escape of R (L)

−β + ΔI <
φe−TI /τ (1 − e−TI /τ + e−2TI /τ )

φ+β−α−ΔI
α−β+ΔI

+ e−4TI /τ
,

(RF-vi) L (R) switches OFF

α <
φ

φ+β−α−ΔI
α−β+ΔI

(1 − e−TI /τ ) + φe−3TI /τ

φ+β−α−ΔI
α−β+ΔI

+ e−4TI /τ
.

Thus, we have six nonlinear inequalities that represent the boundary in parameter
space for the existence of this solution, the combination of fusion and rivalry.

5.3 Rivalry

For weak inputs, there is no fusion ON state in the periodic solution. In this case,
there can be a pure rivalry state where populations alternate dominance with each ON
period of the stimulus (see Fig. 10d). To derive bounds for this state, we consider the
case where the left population is switched ON at t = 0, forcing the right population
to be suppressed, generating the inequalities

ΔI > aL(0) and α − β + ΔI < aR(0).

The last inequality arises because the right population may switch ON for a brief
period (much shorter than τ ), but the left population will win after this transient
phase. After this first ON period, the left and right populations must have stayed ON
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and OFF, respectively, but the left should immediately shut OFF, when the stimulus
does

α + ΔI > aL(TI ), ΔI < aR(TI ), and α < aL(TI ).

After the OFF stage of the stimulus, we now require the right population be switched
ON at t = 2TI , forcing the left population to be suppressed, which generates an anal-
ogous set of inequalities with the roles of the right and left population reversed. By
imposing periodic boundary conditions, we solve for the values of the adaptation
variables, affording us the following collection of inequalities:

(Riv-i) L (R) switches ON: ΔI >
φ

(1 + eTI /τ )(1 + e2TI /τ )
,

(Riv-ii) R (L) is suppressed: α − β + ΔI <
φ

(1 + eTI /τ )(1 + e−2TI /τ )
,

(Riv-iii) No Release of L (R): α + ΔI >
φ

(1 + e−TI /τ )(1 + e−2TI /τ )
,

(Riv-iv) No Escape of R (L): ΔI − β <
φ

(1 + e−TI /τ )(1 + e2TI /τ )
,

(Riv-v) L (R) switches OFF: α <
φ

(1 + e−TI /τ )(1 + e−2TI /τ )
.

The system’s reflection symmetry allows us to only concern ourselves with the set of
inequalities of a single ON/OFF epoch.

5.4 Dominance Switching

There are a few different periodic solutions where dominance switches multiple times
during a single stimulus presentation epoch. It is also possible to derive parameter
boundaries for these types of behavior. However, the resulting formulae are usually
more complicated than those involved in the inequalities presented to this point. In ad-
dition, these more intricate responses to time-dependent stimuli may be more difficult
to detect in experiments, since dominance switching is noisy (Blake and Logothetis
2002; Brascamp et al. 2006). For these reasons, we omit the analysis in this work.

Nonetheless, we do show one such behavior in Fig. 10c. In this case, both pop-
ulations switch ON with the stimulus. Following this, either population may release
to allow the other population dominance. It later escapes suppression to provide a
switch in dominance. The particular population that releases initially then alternates
with each stimulus presentation. We label this behavior as “fusion dom switch” in our
partition of parameter space in Fig. 11. There are other behaviors where dominance
switches multiple times in an epoch but no fusion occurs, which we call “rivalry dom
switch.”

5.5 Partition of Parameter Space

We have characterized several of the behaviors present when both inputs to a compet-
itive neural network are varied in time. In particular, we have produced boundaries in
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the space of input parameters TI and ΔI that give excellent approximations of where
these behaviors exist. We show this partitioning in Fig. 11. Several principals can be
extracted from this diagram. First, fairly strong inputs bypass the rivalry process and
lead to a fusion state, even in time-dependent stimuli, overriding the effects of adap-
tation. As inputs are weakened, adaptation can take effect. For long stimulus periods,
each stimulus ON epoch can host switches in dominance that occur through escape.
As inputs are weakened further, stimulus ON epochs no longer lead to any fusion at
all, and at most one population is ON at any given time. The “rivalry” state we find
leads to a different percept existing for the duration of the stimulus epoch, alternat-
ing with each presentation. If inputs are weak enough, dominance switches begin to
occur during epochs via release.

The results of our analysis suggest a few hypotheses that could be tested in per-
ceptual experiments. As the contrast of an interrupted ambiguous stimulus is reduced,
one would expect an observer to perceive transitions from fusion to rivalrous behav-
ior. In addition, as the time scale of intermittently presented stimuli is varied, one
should expect to see more dominance switching per stimulus epoch, but only a single
dominance period for sufficiently fast interruption times. Thus, exploring bifurcations
in models of rivalry with time-varied stimuli provides a number of reasonable pre-
dictions that could be tested in experiments on binocular rivalry. Now, we proceed to
study the effects of smooth time-varying stimuli on network dynamics.

6 Sinusoidal Input

In this section, we explore the effects of a continuous, rather than a piecewise con-
stant input. It is not straightforward to develop explicit inequalities that describe the
boundaries in parameter space between different periodic solutions. Nonetheless, we
can focus on the mode-locking of solutions in the system (1a)–(1d) when a single
population’s input is sinusoidal in time (4). Thus, we can classify how well a compet-
itive network locks its representation of binocular stimuli to input with continuously
varying contrast. Thinking of the entire competitive neural network as an oscillator,
we can frame this work in the context of previous studies of mode-locking in neu-
ronal networks (Coombes and Bressloff 1999). When both populations’ inputs are
sinusoidal in time (4), we examine the existence of a fusion-rivalry solution. This
persists over a wide range of parameter values and may be an interesting sequence of
percepts to examine in future experiments.

6.1 Single Time-Varied Input

First, we examine 1:1 mode-locking, which we refer to as phase-locking in our
analysis of the system driven by the step input (3). As shown in Fig. 12a, this is a
2TI -periodic solution where the left population switches ON when its input IL rises,
suppressing the right population, at a time we denote TΔ such that

−β + IL(TΔ) = aL(TΔ). (11)
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Fig. 12 Mode-locked solutions in the network (1a)–(1d) when a single population receives sinusoidally
varied input (4). (a) 1 : 1 mode-locked solution for input parameters ΔI = 0.7 and TI = 50. (b) 1 : 2
mode-locked solution for input parameters ΔI = 0.55 and TI = 50. Other parameters are α = 0.2, β = 0.5,
φ = 0.5, τ = 50, IR = 0.5

The left population will then switch OFF after a dominance time duration TL, once
the input IL decreases to a sufficiently weak value so that

α + IL(TΔ) = aL(TΔ + TL), (12)

allowing the right population to subsequently switch ON. Determining the resultant
evolution of the left population’s adaptation variable aL and employing the functional
form of the sinusoidal input, (11) and (12) become

ΔI

2

(
sin

(
πTΔ

TI

)
+ 1

)
− β = φ(e(−2TI +TL)/τ − e−2TI /τ )

1 − e−2TI /τ
,

ΔI

2

(
sin

(
π(TΔ + TL)

TI

)
+ 1

)
+ α = φ(1 − e−TL/τ )

1 − e−2TI /τ
.

(13)

We shall use these implicit expressions for the dominance time of the left popula-
tion to generate a bifurcation diagram revealing period-adding that can occur in this
system (see Fig. 13a).

Beyond this bifurcation, through period-adding, the subsequent periodic solution
that lies in this forced system is a 1 : 2 mode-locked solution (as shown in Fig. 12b).
In this case, the forms of the equations for the left population switching ON and OFF
are similar

IL(TΔ) − β = aL(TΔ), (14)

IL(TΔ + TL) + α = aL(TΔ + TL). (15)

However, the adaptation variable of the left population aL has a longer duration to
recover between ON epochs. Solving for this function and evaluating the input, (14)
and (15) become

ΔI

2

(
sin

(
πTΔ

TI

)
+ 1

)
− β = φ(e(−4TI +TL)/τ − e−4TI /τ )

1 − e−4TI /τ
,
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Fig. 13 (a) Left population dominance time’s fraction of the stimulus half-period TL/TI plotted versus
the stimulus amplitude ΔI for different 1 : n mode-locking to stimulus half-period TI = 50. Each solution
branch is annihilated in a period-adding bifurcation (squares). (b) Period-adding bifurcation boundaries
plotted in input parameter space (TI , ΔI ). Different 1 : n mode-locking regions are labeled. Unlabeled
region includes 1 : n locking for n ∈ Z

+ and n ≥ 4. Other parameters are α = 0.2, β = 0.5, φ = 0.5,
τ = 50, IR = 0.5

ΔI

2

(
sin

(
π(TΔ + TL)

TI

)
+ 1

)
+ α = φ(1 − e−TL/τ )

1 − e−4TI /τ
.

This system of equations can also support two solutions that annihilate in a period-
adding bifurcation for sufficiently fast or weak input. In general, the implicit set of
equations that must be satisfied for a 1 : n mode-locked solution to exist is

ΔI

2

(
sin

(
πTΔ

TI

)
+ 1

)
− β = φ(e(−2nTI +TL)/τ − e−2nTI /τ )

1 − e−2nTI /τ
, (16)

ΔI

2

(
sin

(
π(TΔ + TL)

TI

)
+ 1

)
+ α = φ(1 − e−TL/τ )

1 − e−2nTI /τ
. (17)

As the stimulus intensity ΔI is reduced, the system undergoes numerous tran-
sitions from 1 : n locked states to 1 : (n + 1) locked states. We visualize these in
Fig. 13a by plotting the ratio TL/TI against the associated ΔI value, revealing the
period-adding bifurcation structure. Notice, there is only one branch for each 1 : n

mode-locked solution, even though the shape of the branch might suggest that it is
the stable branch of a saddle/node pair. This is because what would be the corre-
sponding saddle solution does not satisfy the following inequalities, requiring the
left and right populations stay ON and OFF for their specified durations of a 1 : n

mode-locked solution:

α + IL(t) > aL(t) : t ∈ (TΔ,TΔ + TL),

−β + IR < aR(TΔ + TL), IR > aR(TΔ + TL),

−β + IL(t) < aL(t) : t ∈ (TΔ + TL,TΔ + 2nTI ),

α + IR > aR(TΔ), α − β + IR < aR(TΔ).
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We can track the value ΔI at each period-adding bifurcation point as a function of
TI by simply identifying where the set of nonlinear equations (16) and (17) ceases
to have a solution. Doing so, we show regions in parameter space where particular
1 : n locked solutions exist in Fig. 13b. The area of parameter space in which 1 : n

mode-locked solutions exist appears to decrease as n increases. As the amplitude and
timescale of the stimulus decreases, it is more difficult for the network to lock to the
input signal since there is less time for the adaptation variable to recover in between
successive high stimulus states.

6.2 Time-Varied Inputs in Both Populations

Finally, we consider the effects of smoothly varying the contrast of both inputs in
time. Once again, we use a sinusoidal input function (4) that is identical for both
populations. A common solution that arises in this case is a combination of fusion
and rivalry. Here, a single population turns ON, then the other switches ON, followed
by the first population switching OFF, and finally the second population switches OFF
(see Fig. 14a). Notice, due to the underlying symmetry of the system, the ordering
of the events can be flipped to yield a similar solution for the same set of parameters
(see Fig. 14b).

This solution is determined by four values: TΔ, the shift of the first ON population
from the input timing; TL, the sole dominance time of the left population; TU , the
amount of time both populations are ON simultaneously (fusion); and TR , the sole
dominance time of the right population. We can compute these values by following
the order of events in a fast/slow analysis. Presuming the left population is the first
to switch ON, then the input at that time I (−TΔ) must cross through the value of
the left adaptation variable aL(−TΔ) such that I (−TΔ) = aL(−TΔ). In order that
the right population switch ON to create a fusion state at t = TL − TΔ, we require
I (TL − TΔ) − β = aR(TL − TΔ). Then the left population will switch OFF after the
amount of time TU over which fusion occurs, so that

I (TU + TL − TΔ) + α − β = aL(TU + TL − TΔ).

Fig. 14 Rivalry/fusion solutions in the network (1a)–(1d) when a both population receive sinusoidally
varied input (4) when the (a) left and (b) right population switches ON first. Parameters are α = 0.2,
β = 0.5, φ = 0.5, τ = 50, TI , ΔI = 0.8
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Finally, the right population switches OFF after TR , its sole dominance time

I (TU + TL + TR − TΔ) + α = aR(TU + TL + TR − TΔ).

Upon solving for the adaptation variables and employing the sinusoidal input func-
tion (4), we arrive at the following four equations for the associated durations of each
phase of the behavior

ΔI

2

(
1 − sin

(
πTΔ

TI

))
= φ

e(−2TI +TL+TU )/τ − e−2TI /τ

1 − e−2TI /τ
,

ΔI

2

(
sin

(
π(TL − TΔ)

TI

)
+ 1

)
− β = φ

e(−2TI +TR+TU )/τ − e−2TI /τ

1 − e−2TI /τ
,

ΔI

2

(
sin

(
π(TU + TL − TΔ)

TI

)
+ 1

)
+ α − β = φ

1 − e(−TL−TU )/τ

1 − e−2TI /τ
,

ΔI

2

(
sin

(
π(TU + TL + TR − TΔ)

TI

)
+ 1

)
+ α = φ

1 − e(−TR−TU )/τ

1 − e−2TI /τ
.

We can use a numerical root finding algorithm to find the dependence of the durations
of each system state upon input parameters ΔI and TI , as shown in Fig. 15. We also
impose inequality bounds (not shown), as in the case of the single varied input, to
ensure that the left and right populations stay ON and OFF during the correct time
domains. In Fig. 15a, we see that the normalized length of the fusion period increases
with stimulus amplitude, while that of the sole dominance durations decreases. This
may be related to Levelt’s proposition (iv), which indicates dominance times should
decrease with stimulus amplitude for constant stimuli (Levelt 1965). Interestingly, in
our case, the mechanism for termination of the sole dominance times is escape for
TL and release for TR . Notice, in Fig. 15b, that the normalized dominance durations
of each behavior phase is relatively unaffected by changes in TI , except for the delay
time.

Fig. 15 Dependence of the duration of each phase of the fusion/rivalry solution on (a) the maximum
amplitude ΔI , for TI = 80, and (b) the timescale TI , for ΔI = 0.8, of a sinusoidal input to the competitive
neural network (1a)–(1d). Other parameters are α = 0.2, β = 0.5, φ = 0.5, τ = 50
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We have developed several testable predictions for the effects of continuously
varying contrasts of binocular rivalry stimuli in time. First, we predict that there
should be some region of 1:1 mode-locking in the space of stimulus parameters when
the contrast of a single percept is varied in time. As the amplitude and timescale of
the stimulus is reduced, networks responsible for encoding the stimulus can no longer
track every period of contrast variation and cycle skipping occurs. Thus, through a
period-adding bifurcation, different mode-locked behaviors can occur within the net-
work. When both stimuli are varied identically in time, this can lead to a combination
of fusion and rivalry in the activity of the network encoding the signal. Studying the
duration of each phase of this periodic solution of network activity provides general
relationships between the stimulus amplitude and duration of different combinations
of network activation. Thus, we present novel ideas for quantifiable binocular rivalry
experiments that could further assist in identifying the organization of visual process-
ing in the brain.

7 Discussion

We have explored the effects of different types of time-varying stimuli in a compet-
itive neural network with adaptation and have classified new dynamical behaviors
in the context of their perceptual interpretations. Even in the case of constant stim-
uli, we showed oscillatory solutions aside from standard escape or release rivalry
examined previously (Laing and Chow 2002; Taylor et al. 2002; Shpiro et al. 2007;
Curtu et al. 2008; Kilpatrick and Bressloff 2010; Seely and Chow 2011) can arise
as the contrasts of stimuli are varied. Fast/slow analysis, which exploited the slow
timescale of adaptation, was the main technique we used to derive quantities related
to each type of behavior. In particular, we found behaviors where a single population
could switch ON and OFF, regardless of the state of the other population. We then
explored a variety of novel oscillatory behaviors that arise by varying the contrast
of inputs to either or both populations in time. When a single input was periodi-
cally interrupted, the associated population could lock to the state of the input for
high values of ΔI and low values of the input period TI . This phase-locked behav-
ior ceased to exist if input parameters were substantially varied and mechanisms of
escape and release created more complex dynamics. When both inputs were period-
ically interrupted in time, we found several combinations of rivalry and fusion be-
haviors. As opposed to previous modeling studies that primarily focused on percept
stabilization for rapidly interrupted stimuli (Noest et al. 2007; Brascamp et al. 2009;
Gigante et al. 2009), we examined complex dynamics that arise when interruptions
occur on a slower timescale. As the amplitude of the stimulus was reduced there were
transitions from fusion oscillations, to mixes of fusion and rivalry, to a true rivalry
type behavior. Finally, we analyzed the system when inputs were sinusoidal in time.
When a single population received sinusoidal input, we note the existence of a mode-
locked solution where the percepts alternate in dominance. A novel feature of the
smooth input case is the existence of a period adding between 1 : n mode-locked so-
lutions. When both populations received sinusoidal input, we found a common mode
of behavior was a combination of rivalry and fusion for which we could calculate the
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durations of each phase of behavior. In total, our analysis suggests that a host of novel
oscillatory behaviors in competitive networks can arise when input is constant and
especially time-dependent. We believe these provide a rich avenue for study in the-
oretical models of competitive networks (Laing and Chow 2002; Shpiro et al. 2007;
Noest et al. 2007) as well as experimental studies of perceptual rivalry (Blake and
Logothetis 2002; Pearson and Brascamp 2008).

Perceptual rivalry has long provided a noninvasive way of uncovering neural sub-
strates of visual experience (Blake and Logothetis 2002). Our results suggest sev-
eral directions for gauging contrast dependent mechanisms in binocular vision and
comparing models of perceptual rivalry to potential data sets. The periodic inter-
ruption of a single input could be easily enacted in a binocular rivalry experiment.
For high contrasts, our analysis predicts the subject should immediately perceive the
interrupted stimulus, once it is turned ON, if the OFF period is long enough. This
would provide substantial support for the claim that dominance switches in percep-
tual rivalry are mainly governed by a slow adaptive process (Laing and Chow 2002;
Lankheet 2006; van Ee 2011) rather than noise (Brascamp et al. 2006; Moreno-Bote
et al. 2007). As the length of the stimulus ON period is increased, it would be in-
teresting to see when subjects lose this locking of their perception to the phase of
the input. Stimuli whose contrast varies continuously in time could also be used to
quantify a relation between dominance times of each percept and stimulus ampli-
tude. It is interesting that the dominance time of a percept increases with increas-
ing contrast, as shown in our analysis in Sect. 6. This reverses the contrast depen-
dence of dominance times present in constant input paradigms, where dominance
time decreases as contrast increases according to Levelt proposition (iv) (Levelt 1965;
Seely and Chow 2011). Future experiments could employ periodic stimuli of longer
timescales that potentially lead to the combinations of fusion and rivalry seen in our
analysis. This may relate to existing evidence of hysteresis between fusion and ri-
valry in previous experiments (Buckthought et al. 2008). Rather than simply record-
ing dominance times, patients could indicate when the stimulus paradigm produces a
mixture of rivalry and fusion in their perception.

Our results also suggest several interesting directions for future theoretical work
on perceptual rivalry and competitive neural networks. In preliminary numerical sim-
ulations of a network with a smooth firing rate function and continuously varying
input, we have found novel dynamical behaviors such as mixed mode oscillations
(MMOs). This is not surprising, since recently Curtu has characterized MMOs in
a competitive neural network model where adaptation depends linearly upon firing
rate (Curtu 2010). However, studying such behavior in a nonautonomous system
may offer new challenges that could be handled, perhaps, using Floquet theory. By
adding noise into our model, we could examine how robust the boundaries parti-
tioning input parameters are in the face of perturbation. In particular, the parameter
region in which pure phase-locking to a single population’s input may shrink, and we
could quantify this decrease by formulating dominance switching as a first passage
time problem (Moreno-Bote et al. 2007, 2010). Finally, synaptic depression has also
been proposed as a mechanism that produces dominance switching in competitive
neural networks for perceptual rivalry (Laing and Chow 2002; Taylor et al. 2002;
Shpiro et al. 2007; Kilpatrick and Bressloff 2010). Analyzing a system that has this
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divisive, rather than subtractive, form of negative feedback may lead to further com-
plex dynamics not addressed in this study.
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