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Abstract—The generative adversarial network (GAN) aims
to approximate an unknown distribution via a parameterized
neural network (NN). While GANs have been widely applied in
reinforcement and semi-supervised learning as well as computer
vision tasks, selecting their parameters often needs an exhaustive
search and only a few selection methods can be proved to be theo-
retically optimal. One of the most promising GAN variants is the
Wasserstein GAN (WGAN). Prior work on optimal parameters
for WGAN is limited to the linear-quadratic-Gaussian (LQG)
setting, where the NN is linear and the data is Gaussian. In this
paper, we focus on the characterization of optimal WGAN pa-
rameters beyond the LQG setting. We derive closed-form optimal
parameters for one-dimensional WGANs with non-linear sigmoid
and ReLU activation functions. Extensions to high-dimensional
WGANs are also discussed. Empirical studies show that our
closed-form WGAN parameters have good convergence behavior
with data under both Gaussian and Laplace distributions.

I. INTRODUCTION

Generative adversarial networks (GANs) are a new class
of machine learning frameworks put forth by Goodfellow
et al. [1]. A GAN aims to learn an unknown distribution
from training data via two competing components, namely
the generator and the discriminator. The former tries to mimic
the distribution of training data while the latter discriminates
between true data and generated data. Besides computer vision
tasks, applications of GANs to communication systems have
also received a lot of attentions. For example, GANs have been
applied to autonomous wireless channel modeling [2] [3] and
covert communication [4].

Traditionally, both the generator and discriminator in GAN
are approximated by neural networks (NNs) [1], [5]. By
removing NN restrictions and under an optimal unconstrained
discriminator, the minimax problem associated with a GAN
becomes a minimization of the Jensen-Shannon divergence
(JSD) between the distributions of true and generated data.
However, due to the nature of this minimax game, the GAN
suffers from several problems including vanishing gradient and
mode collapse. Many variants of GAN have been proposed
to solve these problems, and one of the most promising
variants is the Wasserstein GAN (WGAN) [6] that replaces
the JSD by the Wasserstein distance widely adopted in the
optimal transport problem [7]. The WGAN is differentiable
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with respect to the generator parameters almost everywhere,
which benefits the convergence of stochastic gradient descent
(SGD) usually adopted for training NNs [6].

Despite the many successes of applying WGAN to learn
distributions in real applications, there are only a few GAN
parameter selection algorithms proved to be theoretically op-
timal [8], [9], which limits the development of GAN beyond
heuristic methods in [1], [5]. This lack of rigorous analysis also
restricts the evaluation of GANs’ performance to subjective
terms. One exception is [8] where Feizi et al. attempted to
theoretically understand WGANs on a simple linear quadratic
Gaussian (LQG) setting. In this benchmark setting, the syn-
thetic data is generated by a Gaussian distribution, the gen-
erator NN is restricted to be linear, and the loss function is
quadratic. It is shown in [8, Theorem 1] that for this simple
setting, the optimal GAN solution happens to be the principal
component analysis (PCA) solution. Regularized versions of
GANs are also well-adopted [5]. Optimal WGAN solutions
under LQG settings, with additional entropic and Sinkhorn
regularizers, are also studied [9].

In this paper, we aim to analytically solve WGANs beyond
the LQG setting. As described in Sec. II, our setting allows
non-Gaussian data distribution and non-linear generators in-
cluding sigmoid and ReLU, and is more general than [8]–
[10]. Also, we attempt to exactly solve WGANs rather than
their regularized versions as [9]. All of these make our
problem exceedingly challenging since even for the inner
discriminator problem, which is an optimal transport problem,
the solution in most cases is numerically approximated but
not analytically characterized [7]. To overcome the challenge,
we first focus on one-dimensional data and generator in Sec.
III-A and III-B, where we provide our closed-form solutions
for optimal generators in one-dimensional WGANs defined in
Sec. II. Extensions to high-dimensional WGANs for results
with linear generators are given in Sec. III-C. The proofs are
presented in Sec. IV, where we leverage result in [11] to
solve the inner discriminator problem in closed-form which
greatly simplifies the necessary conditions of optimal WGAN
parameters. Moreover, our closed-form solutions do not need
any training for the discriminator as [12] and hence provide
additional benefit for training WGAN with a decentralized
system [13]. Empirical studies in Sec. V show that our closed-
form WGAN parameters have good convergence behavior with
synthetic data under both Gaussian and Laplace distributions.
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II. PROBLEM FORMULATION

For the WGAN considered in this paper, the overall transfer
function of the generator NN is denoted as Gθ(.), where
θ is the generator NN parameter (weights). In this paper,
we consider the following popular activation functions as
examples: 1) the linear function; 2) the rectified linear unit
(ReLU) function max(0; z); and 3) the sigmoid function
1/(1 + exp(−z)). Let q ∈ {1, 2} represent the order of the
Wasserstein distance. In a qth-order WGAN setting, one aims
to solve

min
θ

(
inf

π∈Π(µ,νθ)
Eπ[‖X −Gθ(Z)‖q]

)1/q

(1)

for an optimal parameter θ, where ‖ · ‖ denotes the `2-norm
in Rd, µ and νθ are probability measures on Rd, generated
by the data X and the generator output Gθ(Z) for a given
θ and Gaussian input Z, respectively. Also, Π(µ, νθ) is the
set of probability measures on Rd × Rd whose marginals on
the first and second coordinates are µ and νθ, respectively,
satisfying

∫
Rd×Rd ‖x − y‖qdµ(x)dνθ(y) < ∞. The WGAN

problem described in (1) can be equivalently written as
minθ(Eµ[P (x, θ)])1/q where the inner-discriminator problem
is defined as

Eµ[P (X, θ)] := inf
π∈Π(µ,νθ)

Eπ[‖X − Y ‖q]. (2)

Note that (2) belongs to the family of the optimal transport
problems with qth-order Wasserstein distance, q ∈ {1, 2} [7,
Proposition 2.2].

Following [8], we call (1) the population GAN problem,
where θ can be optimized with the true data distribution µ.
In the next Sec. III, we first theoretically solve the population
GAN problems whose solutions will depend on µ. Similarly
to almost every work in the GAN literature, in practice, we
use empirical data to get an estimate of the statistics we need
in our solution, as detailed in Sec. V.

III. MAIN RESULTS

With d = 1, we present our main results for q = 2 in
Sec. III-A and that for q = 1 in Sec. III-B. Note that for ap-
plications in communication systems [2] [4], low-dimensional
(even with d = 1) results can be very useful. For other
applications, extensions to d > 1 are given in Sec. III-C.

A. Results for second-order WGAN under one dimension
First, we consider the quadratic case q = 2 with a non-linear

generator
Gθ(Z) = θ1 + θ2h(Z), (3)

where h : R → R and Z ∼ N(0, 1), also (θ1, θ2) ∈ R ×
R are parameters of the generator NN to be selected. Let Ψ
denote the cumulative distribution function (CDF) of h(Z), for
any continuous data distribution µ, our closed-form WGAN
parameters are as follows:

Theorem 1. Assume CDF Fµ of µ and CDF Ψ of h(Z)
in (3) are continuous and strictly increasing, and variance
Var(h(Z)) > 0. If

Cov
(
X,Ψ−1(Fµ(X)) + Ψ−1(1− Fµ(X))

)
≥ 0, (4)

the population WGAN (1) with q = 2, d = 1 has a unique
minimizer for (θ1, θ2) ∈ R× R as

θ∗2 =
Cov

(
X,Ψ−1(Fµ(X))

)
Var(h(Z))

≥ 0,

θ∗1 = Eµ[X]− θ∗2Eg [h(Z)] ;

(5)

if (4) is not met, (θ∗1 , θ
∗
2) is given by replacing θ∗2 in (5) by

θ∗2 =
Cov

(
X,Ψ−1(1− Fµ(X))

)
Var(h(Z))

≤ 0, (6)

where Eg is taking expectation over Gaussian Z ∼ N (0, 1).

Proof: To solve the inner discriminator problem (2), we
break (1) down into two sub-problems depending on the sign
of θ2, i.e., minθ1,θ2∈R Eµ[P (X, θ1, θ2)] equals to

min

(
min

θ1∈R,θ2≥0
Eµ[P (X, θ1, θ2)], min

θ1∈R,θ2≤0
Eµ[P (X, θ1, θ2)]

)
(7)

The solution of the first sub-problem is indeed (5) while that
for second sub-problem is (6). The condition (4) is obtained
by comparing the values of the two subproblems. The proof
of the first sub-problem, where θ2 ≥ 0, is given in Sec. IV-A,
while the other proofs are omitted due to space limit.

Let us now look at some specific cases of h(z). For
the sigmoid function h(z), recall that the logit function
logit(p) := ln (p/(1− p)) , p ∈ (0, 1) which is the inverse
function h−1(z). The random variable h(Z) has a logit-normal
distribution, i.e. logit(h(Z)) is normally distributed, with CDF

Ψ(v) =
1

2

(
1 + erf

(
logit(v)√

2

))
for v ∈ (0, 1).

For the ReLU function, the CDF of h(Z) = max{Z, 0} is
given by

Ψ(v) = Φ(v) · 1{v≥0}, (8)

where Φ is the CDF of Gaussian N(0, 1). However, now Ψ
has a jump from 0 to 1/2 at v = 0 and does not meet the
setting of Theorem 1 since it is neither continuous nor strictly
increasing. We need the following modification.

Theorem 2. Assume µ has the setting as in Theorem 1 and
Ψ is given by (8). If

Cov
(
X,Φ−1(Fµ(X))1{Fµ(X)>1/2}

)
≥Cov

(
X,Φ−1(Fµ(X))1{Fµ(X)≤1/2}

)
, (9)

the population WGAN (1) with q = 2, d = 1 has a unique
minimizer for (θ1, θ2) ∈ R× R as

θ∗2 =
2π

π − 1
Cov

(
X,Φ−1(Fµ(X))1{Fµ(X)>1/2}

)
θ∗1 = E[X]− θ∗2/

√
2π;

(10)

if (9) is not met, (θ∗1 , θ
∗
2) is given by replacing θ∗2 in (10) by

θ∗2 = − 2π

π − 1
Cov

(
X,Φ−1(Fµ(X))1{Fµ(X)≤1/2}

)
. (11)

For the linear generator h(Z) = Z as [5, eqn. (27)] [8]
[9], one can simplify the results in Theorem 1 and also get
alternative closed-form formula as follows



Corollary 1. Assume µ has the setting as in Theorem 1 and
consider the linear case h(Z) = Z in (3). Then population
WGAN (1) has a unique minimizer for (θ1, θ2) ∈ R× R as

θ∗1 = Eµ[X] and θ∗2 = Eµ[X · Φ−1(Fµ(X))], (12)

also equivalently

θ∗2 = Eg[F−1
µ (Φ(Z)) · Z], (13)

Proof: Besides checking (4), it is easy to see that one can
limit θ2 ∈ R+ such that the optimal parameter is (5) when
h(Z) = Z. Now the distribution of −h(Z) is still the same as
h(Z). Then one can rewrite (3) as Gθ(Z) = θ1+(−θ2)∗(−Z),
and absorb the case for θ2 < 0 into that for θ2 ≥ 0. The rest
of proof is omitted.

Here we briefly compare our proposed WGAN solutions
with the results for the LQG setting in [8, Theorem 1]. In the
LQG setting, the d-dimensional synthetic data is generated
by Gaussian distribution, i.e., X ∼ N (0,K), the generator is
restricted to be a linear generator of the form

ΘZ, Θ ∈ Rd×r, (14)

with Z ∼ N (0, Ir) a Gaussian vector, and the loss function is
quadratic (i.e., second-order WGAN). Since WGAN output
is already Gaussian ΘZ ∼ N (0,K′), it is shown in [8,
Theorem 1] that for this benchmark, the optimal WGAN
solution happens to be the r-PCA solution of Gaussian X .
That is, optimal generator matrix Θ fulfills that K′ = ΘΘT

is a rank r matrix and K′ and K share the same largest
r eigenvalues and the corresponding eigenvectors. Unlike
[8], our results can deal with non-Gaussian data distribution.
Moreover, we can recover the result in [8] when q = 2, d = 1.
Indeed, if X ∼ N (0, σ2), by looking into (12), we have
Φ−1(Fµ(X)) = Φ−1(Φ(X/σ)) = X/σ. Plugging this into
our solution in (12) shows that θ∗1 = 0 and θ∗2 = E[X X

σ ] = σ,
coinciding with the result in [8] for d = r = 1. We emphasize
that neither of our and the results in [8] subsume the other as
a special case as [8] considers general dimension d while our
work is not restricted to Gaussian data distribution.

B. Results for first-order WGAN under one dimension

Here, we present our result for non-linear generators and
first-order Wasserstein distance. We have

Corollary 2. Following the settings in Theorem 1, the mini-
mizer (θ∗1 , θ

∗
2) of the population WGAN (1) with q = 1, d = 1

meet the following necessary conditions

Eµ
[
sign

(
θ∗1 + θ∗2Ψ−1(Fµ(X))−X

)]
= 0,

Eµ
[
sign
(
θ∗1 + θ∗2Ψ−1(Fµ(X))−X

)
Ψ−1(Fµ(X))

]
=0, (15)

when θ∗2 > 0, where sign(x) = 1, 0,−1 for x > 0, x = 0,
x < 0, respectively.

The proof is omitted. Note that when X ∼ N (µ, σ2) then
Fµ(X) = Φ((X−µ)/σ), It can be checked that for the linear
case as Corollary 1, the optimal (θ∗1 , θ

∗
2) = (µ, σ) for q = 2

also meets (15) and is at least a local optimum for q = 1.

C. From one-dimension to multi-dimension
Previously we focused on providing a closed-form solution

for the population WGAN with d = 1. However, for some ap-
plications high-dimensional data are preferred. Here, we show
how to generalize our results to cope with higher dimensional
data by adopting the sliced Wasserstein distance technique [14]
[15]. Let Ω = {ω ∈ Rd : ‖ω‖ = 1} contain all the directions
in Rd. In sliced Wasserstein distance, we project both the data
and the generator’s output onto a random direction ω ∈ Ω with
uniform distribution and compute the Wasserstein distance
with respect to the projected 1-dimensional distributions µω
and νΘ

ω , i.e., ωTX and ωTΘZ respectively follow distributions
µω and νΘ

ω . By replacing the distance of inner-discriminator
problem (2) with sliced Wasserstein distance, the qth-order
sliced (population) WGAN with a linear generator (14) is

min
Θ

(∫
ω∈Ω

inf
π∈Π(µω,νΘ

ω )
Eπ[|ωTX − ωTΘZ|q]dω

) 1
q

. (16)

Motivated by [16] we replace the uniformly distributed ω ∈ Ω
with Gaussian projections ω ∈ ΩG, that is, ω is generated ac-
cording to a zero-mean Gaussian distribution with covariance
matrix (1/d)Id and aim at solving

min
Θ

(∫
ω∈ΩG

inf
π∈Π(µω,νΘ

ω )
Eπ[|ωTX − ωTΘZ|q]dω

) 1
q

, (17)

where we use notation
∫
ω∈ΩG

a(ω)dω :=
∫
ω∈Rd a(ω)dF (ω)

to represent the expectation of function a(ω) over PDF dF (ω)
of Gaussian random vectors. Using [17, Proposition 1], it can
be easily shown that the optimal Θs for (16) and (17) are
identical. Moreover, when q = 2, not only the optimizers but
also the values in (16) and (17) become the same.

With proof sketch and comparisons with [16] [17] given in
Sec IV-B, our main result for (17) with d > 1 is:

Theorem 3. Let X̂G ∼ N (0, σ̃2
x) independent of Gaussian

vector ω with finite σ̃2
x = Eµ[‖X‖2]/d. The gap of (17) to

min
Θ

(∫
ω∈ΩG

inf
π

Eπ[|X̂G − ωTΘZ|q]dω
)1/q

(18)

is bounded by a function fµ(d) = O(d−1/8), where the
marginals of π are N (0, σ̃2

x) and νΘ
ω ; and the optimal Θ for

(18) equals to that of

min
Θ

Eω[|σ̃x −
√
ωTΘΘTω|q], q = 1, 2. (19)

Moreover, the optimal Θ when q = 2 is the minimizer to

Tr(ΘΘT )

d
+

2σ̃x
Γ(1/2)

∫ ∞
0

z−1/2 ∂

∂z

∣∣∣∣I +
2z

d
ΘΘT

∣∣∣∣−1/2

dz;

(20)
where Tr(.) is the matrix trace and Γ(t) is the gamma function.

The derivative with respect to z in (20) for q = 2 can be
easily solved by matrix calculus [18] and the integration is over
one dimension z. However, when q = 1, the d−dimensional
integration in (19) is hard to be simplified as in (20). One can
also modify the proof of Theorem 3 by adding additional ap-
proximation gap to (17) on top of fµ(d) (but still O(d−1/8)),



and obtain a closed-form σ̃2
xI = ΘΘT criteria for selecting Θ

for (19) under q = 1.
The reason that the gap between (17) and (18) in Theorem

3 is vanishing is because for ω ∈ Ω, most ωTX can be well
approximated as X̂G [19]. However, there exist outliers whose
distributions are far from X̂G. An alternative approximation
could instead be restricting ω in Ωe = {e1, . . . , ed} where ei
is the i-th standard unit vector with the i-th entry being 1 and
0 otherwise. We have

Corollary 3. Restrict ω ∈ Ωe, (16) with q = 2 simplifies 1 to

min
Θ

d∑
i=1

inf
π∈Π(µei ,ν

θ
ei

)
E[|eTi X − eTi ΘZ|2], (21)

and the i, jth elements θij of optimal Θ meet
r∑
j=1

(θij)
2 =

(
Eµ[eTi X · Φ−1(Fµ(eTi X))]

)2
. (22)

The generator in (22) depends on more statistical information
of data than (20). In practice, one can regulate the two
objectives (18) and (21) to balance contributions from outliers,
which is left for future work.

IV. THE PROOFS

A. Proof sketch for Theorem 1
In the following, we focus on solving the first sub-problem

with θ2 ∈ R+ in (7). With d = 1, we recall the following
result for the inner discriminator problem (2) of (1), by taking
νθ := PGθ(z), the measure generated by the generator NN
(with parameter θ := (θ1, θ2) in (3)). Let Fµ and Fνθ denote
the cumulative distribution functions (CDFs) of the measures
µ and νθ on R.

Lemma 1 ( [11], Theorem 5.1). Define tθ : R → R ∪ {∞}
by

tθ(x) := sup{y ∈ R : Fνθ (y) ≤ Fµ(x)}. (23)

For q = 1, 2, if µ has no atom (µ is a continuous distribution)

inf
π∈Π(µ,νθ)

∫
R×R
|x− y|qdπ(x, y) =

∫
R
|x− tθ(x)|qdµ(x),

(24)

For the inner discriminator problem (2) with q = 2, d = 1,
Eµ[P (X, θ1, θ2)] for given (µ, θ1, θ2) equals to (24), where
tθ(x) is defined as in (23). Now we need to find a closed-
form tθ(x) to continue. From (3), let Ψ denote the CDF of
h(Z). If Ψ is continuous and strictly increasing and θ2 ∈ R+,
(23) can be expressed in closed-form as

tθ(x) = θ1 + θ2Ψ−1(Fµ(x)). (25)

To see this, since θ2 > 0, observe that

Ψ

(
tθ(x)− θ1

θ2

)
= P

(
h(Z) ≤ tθ(x)− θ1

θ2

)
=P
(
Gθ(Z) ≤ tθ(x)

)
= Fνθ

(
tθ(x)

) (a)
= Fµ(x),

1Another justification for (21) comes from [20] by setting the unknown
copula of data µ same as that of the generator output ΘZ in (1). Note
that Sklar’s theorem ensures that there exists an unique copula function that
injectively maps marginals to the joint distribution [20].

where the last equality follows from (23) and that Fνθ is
continuous and strictly increasing; here, Fνθ inherits the same
properties from Ψ thanks to (3). Though the continuity of Ψ
is not needed in Lemma 1 and its Kantorovich equivalence
[21, Theorem 2.18], without it equality (a) will become an
inequality which harms finding closed-form θ. Then it follows
that tθ(x)−θ1

θ2
= Ψ−1(Fµ(x)), which yields (25). On the

other hand, if θ2 = 0, since Gθ(Z) ≡ θ1 ∈ R, we have
Fνθ (y) = 1{y≥θ1}. Plugging this into (23) directly gives
tθ(x) = θ1 for all x ∈ R. This particularly shows that (25) is
also satisfied for the case θ2 = 0.

With closed-form representation (24)(25) for the inner prob-
lem (2), WGAN (1) with q = 2, d = 1 can be simplified to
be the following stochastic minimization problem

min
θ1∈R,θ2∈R+

Eµ
[∣∣X − θ1 − θ2Ψ−1(Fµ(X))

∣∣2] . (26)

Together with (3), (26) becomes the constrained optimization
problem

min
θ1,θ2∈R

J(θ1, θ2) :=

∫
R

(
θ1+θ2Ψ−1(Fµ(x))−x

)2

F ′µ(x)dx

subject to g(θ1, θ2) := −θ2 ≤ 0. (27)

The corresponding first-order Karush-Kuhn-Tucker (KKT)
condition is

∇J(θ1, θ2) + λ∇g(θ1, θ2) = 0, (28)
λg(θ1, θ2) = 0, (29)

where λ ≥ 0 is the Lagrange multiplier. By direct calculation,
(28) becomes∫

R

(
θ1 + θ2Ψ−1(Fµ(x))− x

)
F ′µ(x)dx = 0,∫

R

(
θ1 + θ2Ψ−1(Fµ(x))− x

)
Ψ−1(Fµ(x))F ′µ(x)dx =

λ

2
.

Recall X is a random variable with CDF Fµ, and the above
equalities can be written as

θ1 + θ2E
[
Ψ−1(Fµ(X))

]
= E[X],

θ1E
[
Ψ−1(Fµ(X))

]
+ θ2E

[
(Ψ−1(Fµ(X)))2

]
− E

[
XΨ−1(Fµ(X))

]
= λ/2.

Note that Fµ(X) ∼ Uniform[0, 1] from [22, Lemma 1],
so that the CDF of Ψ−1(Fµ(X)) is simply Ψ. In other
words, Ψ−1(Fµ(X)) and h(Z) have identical distribution. The
formulas above thus simplify to

θ1 + θ2E [h(Z)]− E[X] = 0,

θ1E [h(Z)] + θ2E
[
(h(Z))2

]
− E

[
XΨ−1(Fµ(X))

]
=
λ

2
.

Plugging θ1 = E[X]− θ2E [h(Z)] from the first equality into
the second one, we obtain

E[X]E [h(Z)]+θ2Var(h(Z))−E
[
XΨ−1(Fµ(X))

]
−λ/2 = 0.

Hence, a solution (θ1, θ2, λ) to (28) must equivalently satisfy

θ1 = E[X]− θ2E [h(Z)] ,

λ/2 = θ2Var(h(Z))− Cov(X,Ψ−1(Fµ(X))).
(30)



To solve the KKT condition (28)-(29) for candidate mini-
mizers, we already know that (28) boils down to (30), while
(29) simply implies either λ = 0 or θ2 = 0. Also, because
Ψ−1 is strictly increasing and Fµ is nondecreasing, the map
x 7→ Ψ−1(Fµ(x)) is nondecreasing. This readily implies

Cov
(
X,Ψ−1(Fµ(X))

)
≥ 0 (31)

in (30) since (x − x′)(Ψ−1(Fµ(x)) − Ψ−1(Fµ(x′))) ≥ 0 for
all x, x′ ∈ R. Specifically, by taking an independent but same
distribution copy X ′ of X ,

0 ≤ E
[
(X −X ′)

(
Ψ−1(Fµ(X))−Ψ−1(Fµ(X ′))

)]
= 2 Cov

(
X,Ψ−1(Fµ(X))

)
.

We separate the proof for solving (27) into two cases from
(30)(31) and combing them yields (5). Details are omitted.

B. Proof sketch for Theorem 3

First we assume X is zero mean, since equivalently one can
modify ΘZ in (17) with a bias ΘZ+E[X] for non-zero mean
X . Wasserstein distance (as RHS of (2)) of order 2 between
ωTX with X̂G, averaged over ω, is bounded from [16]. We
modify this result to make it valid for q = 1, and then get
desired bounded gap fµ(d) between (17)(18) for q = 1, 2 as

fµ(d) := (C ′Eµ[‖X‖2](d−5/4 + d−7/5))1/2 (32)

where C ′ is a constant. With linear generator (14), not only
ωTΘZ is Gaussian as X̂G given ω, on the contrary to [17,
Theorem 1], but also we prevent gap fµ(d) depending on Θ.

Next (19) is from modifying Corollary 1 and 2 to (18).
Finally, solving (19) with q = 2 equals to solving

σ̃2
x −max

Θ
Ew[2σ̃x

√
ωTΘΘTω − ωTΘΘTω]. (33)

For the first term, for Gaussian w ∈ ΩG, let its quadratic
form Uw := ωTΘΘTω and Uw > 0 almost surely. Then,
Ew[
√
ωTΘΘTω] = EUw [UwU

−1/2
w ] and we can prove that

Ew[
√
ωTΘΘTω] =

−1

Γ(1/2)

∫ ∞
0

z−1/2 ∂

∂z
MUw(−z)dz (34)

where MUw(z) := E[ezUw ] is the moment generating function
of Uw. For the second term it is easy to see that

Ew[ωTΘΘTω] = Tr(Ew[ωωT ]ΘΘT ) = Tr(ΘΘT )/d. (35)

Combining these results reach (20).

V. EMPIRICAL STUDY ON CONVERGENCE WITH
SYNTHETIC DATA

We have only considered population WGAN thus far. In
practice, the distribution is estimated from training data and
does not have a closed-form CDF. Therefore, it is of interest
to empirically study how fast the solution converges to the
population WGAN result using synthetic training data. In
Fig. 1, we consider the linear activation and plot the optimal
θ∗2 in (12)(13) obtained by solving population WGAN with
d = 1, q = 2, and its estimate with synthetic data when µ
is chosen to be (a) N (0, 1) and (b) Laplace distribution [23]
with mean 0 and scale 1/

√
2 (which also has a unit variance).
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Fig. 1. Comparison of optimal parameters in (12)(13) with their estimates
(36) using synthetic data.

Specifically, by generating training data {xi}Mi=1 according to
the true distribution µ, we empirically estimate θ∗2 from (12)
by

1

M

M∑
i=1

xiΦ
−1(F̂µ(xi)) (36)

and the kernel density estimation (KDE) [24] is used to
replace the true CDF Fµ(x) with the estimated one F̂µ(x)
from the training data. For each distribution, our result shows
a nice convergence behavior where the difference becomes
smaller than 0.005 with only M=50000 data size. The optimal
θ∗2 in (12)(13) is 1 and 0.98013 for Gaussian and Laplace
distributions respectively. Using linear generator, GAN out-
put is also Gaussian and thus the convergence behavior for
Gaussian data is better than that for Laplace data. Note that
θ∗1 in (12) can be estimated by the sample mean, so the
convergence is not shown in Fig. 1. We also use SGD with
momentum to estimate θ1 and θ2 for loss function (1) under
d = 1, q = 1, with gradient empirically obtained from (15)
using KDE F̂µ(x). With N (µ = 1.5, σ2 = 4) data, (θ1, θ2)
converges to (1.4957, 2.0905) and close to the population local
optimum (µ, σ) for q = 1.

The convergence rate of the empirical WGAN solution to
that of the population WGAN problem has been theoretically
analyzed to be M−2/d for the LQG setting in [8, Theorem
2]. Note that the convergence of iteratively solving empirical
WGAN based on a good solver for (2) was given in [12].
However, this convergence heavily relies on a good semi-
discrete optimal transport solver, which is still hard to design
[25]. It is our future work to analyze the convergence rate for
our non-Gaussian results, also compare it with the empirical
simulations for d > 1.
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APPENDIX A
SOLUTIONS OF (27) FROM (30) IN SECTION IV-A

To solve (27), we separate the proof into two cases from
(31).
Case I: Cov(X,Ψ−1(Fµ(X))) > 0. If θ2 = 0, (30) entails
λ = −2 Cov(X,Ψ−1(Fµ(X))) < 0, which violates the
requirement λ ≥ 0 in (28)-(29). If λ = 0, solving (30) yields

θ∗1 = E[X]− Cov(X,Ψ−1(Fµ(X)))

Var(h(Z))
E [h(Z)] ,

θ∗2 =
Cov(X,Ψ−1(Fµ(X)))

Var(h(Z))
≥ 0.

(37)

That is, the KKT condition gives a unique candidate optimizer
(θ∗1 , θ

∗
2 , λ
∗), with (θ∗1 , θ

∗
2) as in (37) and λ∗ = 0. To check the

corresponding second-order condition, let HJ and Hg denote
the Hessian matrices of J(θ1, θ2) and g(θ1, θ2), respectively.
Clearly, Hg = O2×2 and is all-zero, which implies

HJ + λHg = 2

[
1 E[h(Z)]

E[h(Z)] E[(h(Z))2]

]
. (38)

As det(HJ + λHg)/4 = E[(h(Z))2] − E[(h(Z))]2 =
Var(h(Z)) > 0, HJ + λHg is positive definite. Hence, we
conclude that (θ∗1 , θ

∗
2) in (37) is the unique minimizer of (27).

Case II: Cov(X,Ψ−1(Fµ(X))) = 0. As (30) entails λ/2 =
θ2Var(h(Z)), we have λ = θ2 = 0 (by recalling that either
λ = 0 or θ2 = 0). That is, the KKT condition gives a
unique candidate optimizer (θ∗1 , θ

∗
2 , λ
∗) = (E[X], 0, 0). Since

HJ + λHg is again given by (38), which is positive definite,
we conclude that (θ∗1 , θ

∗
2) = (E[X], 0) is the unique minimizer

of (27).

APPENDIX B
PROOF SKETCH FOR THEOREM 2

As Ψ is neither continuous nor strictly increasing, (25) does
not hold in general and we cannot directly apply proofs in Sec.
IV-A. Again assume θ2 ∈ R+, we deduce from (8) that the
closed form of (23) is

tθ(x) =

{
θ1, if Fµ(x) ≤ 1/2,

θ1 + θ2Φ−1(Fµ(x)), if Fµ(x) > 1/2.
(39)

Similarly to (27), now WGAN (1) simplifies to

min
θ1,θ2∈R

{∫
{Fµ(x)≤1/2}

(
θ1 − x

)2

F ′µ(x)dx

+

∫
{Fµ(x)>1/2}

(
θ1 + θ2Φ−1(Fµ(x))− x

)2

F ′µ(x)dx

}
subject to g(θ1, θ2) := −θ2 ≤ 0.

Then optimal θ∗1 , θ
∗
2 in (10) can be obtained by solving this

stochastic optimization problem.

APPENDIX C
PROOF FOR THEOREM 3

First we prove that for q = 1, 2, the gap between (17) and
(18) is bounded as∣∣∣∣∣(

∫
ω∈ΩG

inf
π

Eπ[|ωTX − ωTΘZ|q]dω
) 1
q−

(∫
ω∈ΩG

inf
π

Eπ[|X̂G − ωTΘZ|q]dω
) 1
q

∣∣∣∣∣ ≤ fµ(d) (40)

where fµ(d) is in (32). To see this, first we prove∫
ω∈ΩG

W q
q (ωTX, X̂G)dω ≤ (fµ(d))q, q = 1, 2

where as the RHS of (2) we define Wasserstein distance of
order q as

Wq(µ, ν) :=

(
inf

π∈Π(µ,ν)
Eπ[‖X − Y ‖q]

)1/q

where the marginals with respect to the first and second
variables are given by µ and ν respectively. The case for q = 2
is proved by [16, Corollary 3]. Now for q = 1,∫

ω∈ΩG

W1(ωTX, X̂G)dω ≤
∫
ω∈ΩG

W2(ωTX, X̂G)dω

≤
(∫

ω∈ΩG

W 2
2 (ωTX, X̂G)dω

)1/2

≤ fµ(d)

where the first inequality is from W1 ≤ W2 by the definition
of Wasserstein distances (see [26, Remark 6.6]) and the second
one is from Jensen’s inequality. Then from triangle inequality,
given ω

|Wq(ω
TX,ωTΘZ)−Wq(X̂G, ω

TΘZ)|
≤Wq(ω

TX, X̂G), q = 1, 2,

which implies∫
ω∈ΩG

|Wq(ω
TX,ωTΘZ)−Wq(X̂G, ω

TΘZ)|qdω

≤ (fµ(d))q. (41)

Finally, by triangle inequality∣∣∣∣∣
(∫

ω∈ΩG

W q
q (ωTX,ωTΘZ)

)1/q

−
(∫

ω∈ΩG

W q
q (X̂G, ω

TΘZ)

)1/q
∣∣∣∣∣

≤
(∫

ω∈ΩG

|Wq(ω
TX,ωTΘZ)−Wq(X̂G, ω

TΘZ)|qdω
)1/q

.

Note that when q = 1, one do not need triangle inequality to
make the upper-bound valid. Then with (41), we have (40).

Next, now from q = 1 in (18) we aim to solve

min
Θ

(∫
ω∈ΩG

inf
π

Eπ[|X̂G − ωTΘZ|]dω
)
, (42)



which equals to (19) with q = 1 as follows. Given Θ and ω,
following the proof of Corollary 2

inf
π

Eπ[|X̂G − ωTΘZ|] =
1

σ̃x
E[|(σ̃x −

√
ωTΘΘTω)X̂G|],

since the optimal transport function will make the distribution
of ωTΘZ same as

√
ωTΘΘTω

σ̃x
X̂G.

Then solving (42) equals to solving

min
Θ

Eω[|σ̃x −
√
ωTΘΘTω|] (43)

since

E[|(σ̃x −
√
ωTΘΘTω)X̂G|] = |σ̃x −

√
ωTΘΘTω|E[|X̂G|].

Similarly, from q = 2 in (18) , we aim to solve

min
Θ

(∫
ω∈ΩG

inf
π

Eπ[|X̂G − ωTΘZ|2]dω

) 1
2

, (44)

which equals to solving

min
Θ

∫
ω∈ΩG

(
σ̃x −

√
ωTΘΘTω

)2

dω (45)

from Corollary 1. And (45) equals to (19) with q = 2.
Finally, it is easy to see that (19) with q = 2 equals to (33).

Here we focus on the term

Ew[
√
ωTΘΘTω] = EUw [UwU

−1/2
w ] (46)

in (33) and prove that it equals to (34). By recalling the gamma
function Γ(t) :=

∫∞
0
yt−1e−ydy for all t > 0, we observe that

U−1/2
w = U−1/2

w

1

Γ(1/2)

∫ ∞
0

y1/2−1e−ydy

=
1

Γ(1/2)Uw

∫ ∞
0

(
y

Uw

)1/2−1

e−ydy

=
1

Γ(1/2)

∫ ∞
0

z−1/2e−zUwdz,

where the second line follows from the change of variable
z = y/Uw. Note that the above calculation is motivated by
[27, Example 3.2b.2]. It follows that (46) equals to

1

Γ(1/2)

∫ ∞
0

z−1/2EUw [Uw exp(−zUw)]dz

which equals to (34) from EUw [Uw exp(−zUw)] =
− ∂
∂zMUw(−z) where we recall MUw(z) := E[ezUw ] is the

moment generating function of Uw. Moreover, from [27,
Theorem 3.2a.1], MUw(z) has a closed form as

MUw(z) =

∣∣∣∣I− 2z

d
ΘΘT

∣∣∣∣−1/2

. (47)

Plugging (47) into (34), together with (33)(35), we have (20).

APPENDIX D
EXTENSION OF THEOREM 3 FOR q = 1

To get a solution as (20) for Θ under q = 1, we sacrifice
the approximation error in Theorem 3 by modifying (40) (41)
to get upcoming (51). Details are as follows. Given ω and Θ,
from triangle inequality

|W1(ωTX,ωTΘZ)−W1(X̂G, ẐG)|
≤W1(ωTX, X̂G) +W1(ωTΘZ, ẐG),

where ẐG ∼ N (0, σ̃2
Θ) is independent of ω with

σ̃2
Θ =

E[‖ΘZ‖2]

d
=

Tr(ΘΘT )

d
.

Then (41) is modified as∫
ω∈ΩG

|W1(ωTX,ωTΘZ)−W1(X̂G, ẐG)|dω

≤fµ(d) + fΘZ(d), (48)

where fΘZ(d) is similarly defined as (32) by replacing µ with
ΘZ and still O(d−1/8). Then for every Θ, following previous
steps to prove (40) from (41) we have∣∣∣∣∣

∫
ω∈ΩG

inf
π

Eπ[|ωTX − ωTΘZ|]dω (49)

−
∫
ω∈ΩG

inf
π

Eπ[|X̂G − ẐG|]dω

∣∣∣∣∣
is bounded by O(d−1/8) for large d. Following the proof of
reaching (43), now we aim to solve

min
Θ
|σ̃x −

√
Tr(ΘΘT )/d|]. (50)

and Θ meeting
σ̃2
xI = ΘΘT (51)

will be the solution.

APPENDIX E
PROOF OF COROLLARY 3

As in Section IV-B, without loss of generality we assume
X is zero mean. Also we let Xj be the jth element of X and
Zj is similarly defined. The sliced Wasserstein GAN problem
with ω ∈ Ωe in (21) can be rewritten as

d∑
k=1

min
(θi1,...,θir)

inf
π

Eπ

∣∣∣∣Xi −
r∑
j=1

θijZj

∣∣∣∣2
 .

We can thus solve the corresponding 1-dimensional GAN
problem for each of the d-dimensions separately. Our deriva-
tion in Corollary 1 then leads to the solution that for
θi1, . . . , θir in the ith row of optimal Θ,√√√√ r∑

j=1

(θij)2 = Eµ[eTi X · Φ−1(Fµ(eTi X))].

Then (22) is valid.
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