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Abstract—The Byzantine distributed sequential change detec-
tion (BDSCD) problem is studied, where a fusion center monitors
an abrupt event occurring at an unknown time through a bunch
of distributed sensors. It is assume that a part of the sensors
are compromised and each sensor, honest or compromised,
communicates with the fusion center via a noiseless link. A
new converse for this problem is presented whose first-order
asymptotic delay subject to a certain false alarm rate coincides
with the currently best known result achieved by the consensus
rule proposed by Fellouris et al. This result characterizes the first-
order asymptotic performance of BDSCD and shows that 1-bit
links suffice to achieve the asymptotic optimality. The proof of
the converse involves constructing an attack strategy, called the
reverse attack, introducing a genie that gives the fusion center
the identities of a subset of honest sensors and observations at
each sensor used for generating its local report, and transforming
the problem into an equivalent non-Byzantine sequential change
detection but with reduced number of honest sensors.

I. INTRODUCTION

The problem of sequential change detection (SCD) studies
detecting an abnormal event as quickly as possible after its
occurrence at an unknown time, subject to a certain false
alarm rate. It has many applications and has been extensively
researched since the early works [1], [2], [3]. A nice tutorial
on SCD can be found in [4]. However, recent applications such
as massive machine-type communications (mMTC) and inter-
net of things (IoT) [5] typically involve multiple distributed
sensors monitoring the event and reporting their observations
to the fusion center via bandwidth-limited links. Moreover,
some sensors, whose identities are unknown to the fusion
center, may be compromised and try to sabotage the detection.
Motivated by these applications, this paper considers the de-
centralized version of SCD, where a fusion center monitors the
event through distributed sensors, with compromised sensors
forming Byzantine attack. This problem has been studied in
[6], [7] and is called Byzantine distributed SCD (BDSCD).

In [6], a special case of BDSCD, with only one com-
promised sensor and with infinite-bandwidth links between
the center and sensors, is considered. A decision rule called
second-alarm rule is proposed and analyzed. In [7], the general
BDSCD problem, with either infinite-bandwidth links or 1-bit
links, is investigated. Multiple rules are proposed and their
corresponding asymptotic performance are analyzed. Among
the rules with 1-bit links proposed in [7], the voting rule
that declares the occurrence of the event after the number
of received local reports exceeds a certain threshold has the

best first-order asymptotic performance. When the threshold
is set to be the total number of honest sensors, the asymptotic
performance of the voting rule, called the consensus rule in
this special case, reaches its maximum. This achieves the best
asymptotic performance of the Low-Sum-CUSUM scheme in
[7], which requires infinite-bandwidth links.

Despite the exciting results in [6], [7], it is thus far unclear
what the best first-order asymptotic performance for BDSCD
is. Although one converse can be easily obtained by assuming
that a genie reveals to the fusion center the identities of
all honest sensors (this simple converse will be presented in
Section II-A), this converse bound and the best achievable
asymptotic performance in [7] do not match. This indicates
that either the best achievable scheme thus far is not optimal
or the converse is not tight, or both.

In this work, we present a new converse for the first-order
asymptotic performance of BDSCD. In our proof, we first
construct an attack strategy referred to as the “reverse attack”.
Then, we assume a less powerful genie who only reveals
the identities of some honest sensors and all the observations
that each sensor uses for generating its local report. After
that, inspired by the very recent work of Chen and Wang
[8], we transform the genie-aided version of BDSCD into
an equivalent centralized SCD, for which the cumulative sum
(CUSUM) procedure is known to be optimal [9]. Evaluating
the performance of CUSUM then shows the new converse. It
turns out that the new converse and the consensus rule have
the same first-order asymptotic performance; hence, the first-
order asymptotic performance of BDSCD is characterized. An
important implication of this result is that 1-bit links are good
enough for BDSCD in terms of first-order asymptotic delay
performance.
Notations : For a positive integer K, define [K] :=
{1, . . . ,K} and [K]+ = {0} ∪ [K]. Function (x)+ out-
puts x if x ≥ 0 and zero otherwise. For two real func-
tions f1(x) and f2(x), as x → ∞, we write f1(x) ∼
f2(x) when f1(x)/f2(x) → 1 and f1(x) & f2(x) when
lim inf(f1(x)/f2(x)) ≥ 1 .

II. PROBLEM FORMULATION AND KNOWN RESULTS

The BDSCD problem consists of a fusion center and K
sensors indexed by [K]. Among these sensors, there is an un-
known subset N ⊂ [K] of honest sensors, with the remaining
M := K − |N | sensors being potentially compromised. The
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goal of the honest sensors is to monitor an event and help the
fusion center decide whether the event has occurred, while
the goal of compromised sensors is to collaboratively confuse
the fusion center. Although the exact information about which
sensors are honest and which sensors are compromised is
unknown, we assume that M , the maximum number of sensors
the attacker can compromise, is known by the fusion center.
Moreover, it is assumed that there are more honest sensors than
compromised sensors, i.e., |N | > M . The observations of all
K sensors are sequences of independent random variables with
known distributions, subject to the same distribution change at
a unknown but deterministic time ν. Before the change time
ν, sensor k’s observations Xk

1 , X
k
2 , . . . , X

k
ν are independent

and identically distributed (i.i.d.) with the density P0, while
Xk
ν+1, X

k
ν+2, . . . are i.i.d. with the density P1. If the change

never happens, i.e., ν = ∞, Xk
t are i.i.d. with P0 for all

t. We denote by Xt = [X1
t , X

2
t , . . . , X

K
t ] the collection

of observations at time t and we use the notation Xt2
t1

for t1 < t2 to denote the collection [Xt1 ,Xt1+1, . . . ,Xt2 ].
Also, we define the Kullback-Leibler information from P0

to P1 as [10], I :=
∫

log
(
P1(x)
P0(x)

)
P1(x)dx. Throughout the

paper, we assume that I is finite and strictly positive and∫
log (P1(x)/P0(x))

2
P1(x)dx ≤ ∞.

All the local reports from honest or compromised sensors
belong to the set X , which satisfies the underlying bandwidth
constraint on the noiseless link between each sensor and the
fusion center. It is worth emphasizing that this setting encom-
passes many scenarios discussed in existing works including
X = {0, 1} and X = R in [7] and X being a set of finite
alphabets in [9]. At each time index t, the honest sensor
k individually makes a local decision by mapping its own
observations up to time t to an element in X , and then
chooses to report it or not according to the adopted reporting
mechanism. Based on the received local reports from all
sensors, the fusion center adopts a stopping rule to determine
when to declare the event has occurred. A change detection
rule T includes such a stopping rule and local rules at honest
sensors. The M compromised sensors, on the other hand, try to
disrupt/confuse the fusion center by sending attack signals. We
assume a very powerful attacker that knows the exact change-
time ν and have the access to the current and past observations
of all nodes. The symbols sent by the compromised sensors
at time t are then produced by g, a function (called an attack
strategy) with inputs ν, Xt

1, and T . We denote by G the set
of all attack strategies including all possible g with no more
than M compromised sensors. Following [7], we analyze the
performance of rule T by its worst-case expected detection
delay and mean time to false alarm in the sense of Lorden
[2], under the worst attack strategy among G. Specifically, we
define the performance metrics as follows.
• Detection Delay: The worst-case mean detection delay

D[T ] := sup
g∈G,ν

ess supEgν [(T − ν)+|Xν
1 ], (1)

where Egν [.] means the expectation is taken w.r.t. P0 when
t ≤ ν and w.r.t. P1 when t > ν under the attack strategy
g ∈ G.

• False Alarm: Without any abnormal changes (i.e. ν =
∞), the worst-case mean time to false alarm is

A[T ] := inf
g∈G

Eg∞[T ], (2)

where Eg∞[.] means the expectation is w.r.t. P0 for all t
(i.e., ν =∞) under the attack strategy g ∈ G.

The main theme of this paper is to investigate the optimal
asymptotic behavior of how the mean detection delay scales
with the mean time to false alarm in the worst case. Specifi-
cally, for an optimal detection rule T that has A[T ] = γ, we
want to characterize how D[T ] grows with log(γ) as γ →∞.

A. Known results

For the considered problem with |N | = 1 and M = 0, the
problem reduces to the standard SCD problem for which it
was shown in [2], [3] that Page’s CUSUM procedure Tsingle
[1] achieves the optimal scaling that for A[Tsingle] = γ, the
expected detection delay scales like D[Tsingle] ∼ log γ/I as
γ → ∞. For M = 0 but general |N |, Mei in [9] developed
a scheme Tmultiple, where each sensor performs CUSUM ac-
cording to its local observations and sends a binary report to
the fusion center, which declares the occurrence of the event
when all the |N | sensors say so. It was then shown that this
scheme is asymptotically optimal that for A[Tmultiple] = γ, the
expected detection delay scales like D[Tmultiple] ∼ log γ/|N |I
as γ →∞.

Very recently, in [7], the BDSCD for general |N | and M
was discussed and multiple schemes were analyzed. Among
these schemes, the L-voting rule TL achieves the best scaling.
In this scheme, each sensor adopts the same procedure as in
Tmultiple, and the fusion center declares the occurrence of the
event at the first time at least L sensors raises alarms simulta-
neously. The scaling achieved by this scheme is summarized
as follows.

Theorem 1 ([7, Theorem 26]). Let L be an integer satisfying
M < L ≤ |N |. For A[TL] = γ, as γ → ∞, the worst-case
mean detection delay of the voting rule scales like

D[TL] ∼ log γ

(L−M)I
, (3)

The best asymptotic performance reported in [7] is the
above one with L = |N |, which also coincides with another
scheme in [7], Low-Sum-CUSUM, that requires infinite band-
width. This leads us to conjecture that (3), with L = |N |,
is the optimal first-order behavior. A tight converse is then
necessary to verify this conjecture.

We would like to point out that a converse can be obtained
by revealing the identities of all |N | honest sensors and using
the asymptotic optimality in [9] with the honest sensors N as

Theorem 2 (Simple converse). For any Byzantine change
detection rule T with A[T ] = γ, as γ → ∞, the worst-case
mean detection delay meets D[T ] & log γ

|N |I .

Unfortunately, this converse is not tight compared to (3).
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Fig. 1. Diagram of proof steps.

III. MAIN RESULTS

In this section, we present the main result of this paper,
which is a new converse of the first-order asymptotic perfor-
mance of BDSCD. This main result, together with achievi-
ability of the consensus rule in Theorem 1 which requires
only 1-bit link, characterizes the optimal first-order behavior
of BDSCD.

Theorem 3 (Tight converse). For any Byzantine change
detection rule T with A[T ] = γ, as γ → ∞, the worst-case
mean detection delay is lower bounded as

D[T ] &
log γ

(|N | −M)I
. (4)

To prove this theorem, we first note that if the optimal
asymptotic scaling is lower bounded by η(γ) under an attack
strategy, then it is also lower bounded by η(γ) under the worst
attack. We thus proceed by constructing an attack strategy,
called the reverse attack, which yields the lower bound in
Theorem 3. This is done by assuming that a genie provides
the identities of |N | − M out of |N | honest sensors and
the local observations used for generating the local report
at every sensor. After that, by absorbing the impact of the
reverse attack into pre/post-change distributions, the problem
is transformed into an equivalent centralized SCD problem for
which CUSUM is known to be optimal. Finally, evaluating the
CUSUM procedure for the transformed problem reveals the
connection to another non-Byzantine SCD with only |N |−M
honest sensors. A sketch of the proof of the new converse is
outlined in Fig. 1 and the details are given in the next section.

IV. THE PROOF

The proof presented in this section follows closely the steps
shown in Fig. 1.

A. The reverse attack

For the ease of presentation, we let P0,1 = P0 and
P1,1 = P1. Recall that each honest sensor k’s observation
sequence Xk

t is drawn i.i.d. according to P0,1 before the
change time ν and i.i.d. according to P1,1 after ν. We construct
an attack strategy as follows. For each compromised sensors
k′, it generates a fake observation sequence Xk′

t , which is then
input to the assigned local decision function for forming the

fake report. The fake observation sequence is generated i.i.d.
according to P0,2 and P1,2 before and after the change time ν,
respectively. i.e., the compromised sensors form fake reports
according to observations based on wrong distributions. To
establish the tight converse, we will set P0,2 = P1,1 = P1 and
P1,2 = P0,1 = P0 in the very end of the proof; therefore, we
call this attack strategy the “reverse attack”. However, most
of the steps in the proof stay valid for general densities P0,2

and P1,2.

B. Genie-aided Byzantine centralized SCD

First note that the worst case happens when there are M
compromised sensors. Also since the identities of the sensors
are unknown, the fusion center cannot enhance the worst-case
performance by selectively accepting reports. If the fusion
center accepts reports from K −K ′, K ′ ≤ |N |, sensors only,
in the worst case, the problem reduces to the BDSCD with
M compromised sensors and |N |−K ′ honest sensors, which
results in a worse performance. Moreover, when K ′ > |N |,
we are left with only compromised sensors in the worst
case, which is obviously worse than accepting all reports. We
therefore only have to consider that the fusion center uses
reports from all K sensors for detection in what follows.

The K sensors are divided into three groups where the first
two groups consist of M sensors each, while the last one
has |N | −M sensors. All sensors in the first or third groups
are honest while those in the second group are compromised.
Assume that there is a genie giving away the identities of
|N | − M honest sensors to the fusion center. For the rest
M honest sensors and M compromised sensors, the identities
are unknown to the fusion center. Without loss of generality,
we assume that sensors in the first two groups have indices
[2M ]. We also give the observations used at each sensor (fake
observations if the sensor is compromised) for generating its
local report and the densities P0,2 and P1,2 to the fusion center.
Let s : [K] → [2] be a function that assigns each sensor to
group 1 or 2 in such a way that exactly M out of the first
2M sensors are assigned to compromised group 2 and the last
|N | −M sensors are all assigned to honest group 1. Let S
be the collection of all possible assignments s. Clearly, there
are total |S| =

(
2M
M

)
such assignments. For θ ∈ {0, 1}, the

product density under the compromised group assignment s is

Pθ,s(Xt) =

2M∏
k′=1

Pθ,s(k′)(X
k′

t )

K∏
k=2M+1

Pθ,1(Xk
t ). (5)

Now, we are facing a composite change detection problem,
which we refer to as genie-aided Byzantine centralized SCD
(BCSCD). Before the change time ν, the random vectors
X1,X2, . . . ,Xν−1 are i.i.d. over time with density P0,s while
Xν ,Xν+1, . . . are generated with density P1,s, for some
s ∈ S. In this genie-aided version, the fusion center knows
everything about the compromised sensors except for their
exact locations. With slight abuse of notations, as (1), the mean
detection delay of this problem is given by

D[T ] := sup
s∈S,ν

ess supEsν [(T − ν)+|Xν
1 ]; (6)



also as (2), the mean time to false alarm is

A[T ] := inf
s∈S

Es∞[T ]. (7)

C. Transformed Centralized SCD

We transform the genie-aided BCSCD problem into an
equivalent centralized SCD problem for which CUSUM is
known to be optimal. Let τ2M (Xt) be the masked ordering
map that puts the first 2M elements of its input Xt in descend-
ing order while keeps the other |N |−M positions unchanged.
A decision rule T (.) of the genie-aided BCSCD problem
is said to be masked symmetric if it can be represented as
T ({Xt}t≥1) = T̃ ({τ2M (Xt)}t≥1) for some decision rule T̃ .

In the transformed centralized SCD problem, the fusion
center observes X̃t = τ2M (Xt) at time t. Let P̃θ(X̃t) be
the density of τ2M (Xt), where Xt is generated according to
density Pθ,s, θ ∈ {0, 1}. Before the change, the observations
{X̃t} follow P̃0 while after the change, they follow P̃1. Also,

P̃θ(X̃t) =
∑

Xt:τ2M (Xt)=X̃t

Pθ,s (Xt) , (8)

where the equality follows from that the absolute value of the
Jacobian of a permutation is always 1. Following the proof
of part 1 of [8, Lemma 4.1], we can easily show that for
all assignments s ∈ S , the density P̃s(X̃t) does not depend
on s. Suppose the change occurs at the time index ν. Under
hypothesis H̃1, the random vectors X̃1, X̃2, . . . , X̃ν−1 are
drawn i.i.d. over time with density P̃0 while X̃ν , X̃ν+1, . . .
are generated i.i.d. with density P̃1. Under hypothesis H̃0,
there is no change, i.e. ν = ∞, and X̃t are drawn i.i.d. with
density P̃0 for all t.

We first focus on a masked symmetric rule T , and show that
the detection delay of the genie-aided BCSCD is identical to
that of the transformed SCD problem, defined as D[T̃ ] :=
supν ess supEν [(T̃ − ν)+|X̃ν

1 ]. Specifically, we will show

D[T ] = sup
s∈S,ν

ess supEsν [(T̃ ({τ2M (Xt)}t≥1)− ν)+|Xν
1 ]

(a)
= sup

ν
ess supEν [(T̃ ({X̃t}t≥1)− ν)+|X̃ν

1 ] = D[T̃ ]. (9)

The first equality is from the definition in (6) and we will
devote to prove equality (9a). To do this, note that

Esν [(T̃ ({τ2M (Xt)}t≥1)− ν)+|Xν
1 ]

=

∞∑
z=0

1− P
((

T̃ ({τ2M (Xt)}t≥1)− ν
)+

≤ z
∣∣Xν

1

)

=

∞∑
z=0

1−
∫

1{
(T̃ ({τ2M (Xt)}t≥1)−ν)

+≤z
} ν+z∏
t=ν+1

P1,s(Xt)dX
ν+z
ν+1

(a)
=

∞∑
z=0

1−
∫

1{
(T̃ ({X̃t}t≥1)−ν)

+≤z
} ν+z∏
t=ν+1

P̃1(X̃t)dX̃
ν+z
ν+1

=

∞∑
z=0

1− P
((

T̃ ({X̃t}t≥1)− ν
)+

≤ z
∣∣X̃ν

1

)
=Eν [(T̃ ({X̃t}t≥1)− ν)+|X̃ν

1 ], (10)

where P() is the probability and 1{.} is the indicator function;
and (a) follows from the change of variables in integration
[11] and the fact that P̃1(.) does not depend on s.

Now, for a fixed ν and for each s ∈ S, let Ps and P̃ denote
the probability measures on RK×ν with densities specified by
(5) and (8) with θ = 0, respectively. To establish (9a), observe
that for any x ∈ RK×ν , from (10), we have

Esν [(T̃ ({τ2M (Xt)}t≥1)− ν)+|Xν
1 ](x) =

Eν [(T̃ ({X̃t}t≥1)− ν)+|X̃ν
1 ](τ2M (x)). (11)

Let DM denote ess supEsν [(T̃ ({τ2M (Xt)}t≥1) − ν)+|Xν
1 ]

where the essential supremum is taken under Ps. By defi-
nition, there exists Ω ⊆ RK×ν with Ps(Ω) = 1 such that
DM ≥ Esν [(T̃ ({τ2M (Xt)}t≥1) − ν)+|Xν

1 ](x) for all x ∈ Ω.
By (11), we have

DM ≥ Eν [(T̃ ({X̃t}t≥1)− ν)+|X̃ν
1 ](τ2M (x)), ∀x ∈ Ω.

Note that

P̃(τ2M (Ω)) =

∫
τ2M (Ω)

P̃0(y)dy =

∫
Ω

P0,s(x)dx = Ps(Ω) = 1,

where the densities P̃0 and P0,s are given by (8) and
(5) respectively. We therefore conclude that DM ≥
ess supEν [(T̃ ({X̃t}t≥1)−ν)+|X̃ν

1 ] where the essential supre-
mum here is taken under P̃. Noting that this is true for every
s ∈ S shows the relation ≥ in (9a). By using the same
argument as above, but switching the roles of the left-hand
side and right-hand side of (9a), we obtain the relation “≤”.

We have shown that the detection delay of genie-aided
BCSCD (6) is equal to that of transformed SCD under masked
symmetric rules. One can similarly prove that the mean time
to false alarm of the original problem (7) is equal to that of
the new problem. The rest is to show that for any fusion rule
T ′(.), there is a masked symmetric rule T (.) that is not worse
than T ′(.). This is shown in Lemma A.1 in Appendix and then
the transformation of SCD is established.

D. Establishing the converse

So far, we have transformed the genie-aided BCSCD prob-
lem into an equivalent centralized SCD problem with obser-
vations following P̃0 and P̃1 before and after the change point
ν, respectively. For such a problem, it is well known from
[3], [9, Lemma 2] that an optimal strategy is Page’s CUSUM
procedure given by σ̃(h) = inf{t ∈ N : Ỹt ≥ h}, where
Ỹt = (Ỹt−1 + ˜̀

t)
+ with Ỹ0 = 0, and from (8)

˜̀
t = log

∑
Xt:τ2M (Xt)=X̃t

P1,s(Xt)∑
Xt:τ2M (Xt)=X̃t

P0,s(Xt)

= log

∑
π∈Π2M

P1,s(π(Xt))∑
π∈Π2M

P0,s(π(Xt))
= log

∑
π∈Π2M

P1,s◦π−1(Xt)∑
π∈Π2M

P0,s◦π−1(Xt)

(a)
= log

∑
s′∈S P1,s′(Xt)

2M !

(2M
M )∑

s′∈S P0,s′(Xt)
2M !

(2M
M )

. (12)

where ◦ is the function composition operator, and (a) follows
from the fact that for a compromised group assignment s,



summing over all the permuted versions s ◦ π−1 is equivalent
to summing over all the assignments s′ with each s′ being
involved 2M !/

(
2M
M

)
times. In what follows, we set P0,2 =

P1,1 and P1,2 = P0,1 according to the reverse attack described
in Sec. IV-A. We now rewrite the likelihood in (12) as

˜̀
t = log

∑
s∈S P1,s(Xt)∑
s∈S P0,s(Xt)

(13)

(a)
= log

(∑
s∈S

∏2M
k′=1 P1,s(k′)(X

k′

t )
)∏K

k=2M+1 P1,1(Xk
t )(∑

s∈S
∏2M
k′=1 P0,s(k′)(X

k′
t )
)∏K

k=2M+1 P0,1(Xk
t )

(b)
= log

∏K
k=2M+1 P1,1(Xk

t )∏K
k=2M+1 P0,1(Xk

t )
, (14)

where (a) follows from (5) and (b) is because of the fact that
for every s, there exists a s̄ such that whenever s(k′) = 1,
s̄(k′) = 2 and whenever s(k′) = 2, s̄(k′) = 1; therefore,

∑
s∈S

2M∏
k′=1

P1,s(k′)(X
k′

t ) =
∑
s∈S

2M∏
k′=1

P0,s̄(k′)(X
k′

t )

=
∑
s̄∈S

2M∏
k′=1

P0,s̄(k′)(X
k′

t ), (15)

where the first equality is from P1,1 = P0,2 and P1,2 = P0,1.
Hence, the optimal test reduces to the standard centralized
CUSUM procedure for the change detection with |N | −M
honest sensors. Applying the results in [9] then shows (4).

V. DISCUSSIONS

We discuss two byproducts obtained along the proof. Firstly,
it is immediate that the “reverse attack” proposed in Sec-
tion IV-A is an asymptotically worst attack for the original
BDSCD problem. Secondly, in Section IV-D, we have shown
that the decision rule, called mixture CUSUM, defined in the
following is optimal for the genie-aided BCSCD.

Definition 1 (mixture CUSUM). For a sequence of obser-
vations Xt , (X1

t , X
2
t , . . . , X

K
t ) at any time t, the mixture

CUSUM algorithm computes Yt = (Yt−1 + `t)
+
, where

Y0 = 0 and `t is the mixture likelihood ratio defined as
(13). The mCUSUM reports an alarm once Yt exceeds the
prescribed threshold h. The corresponding stopping time is
then given by σ(h) = inf {t ∈ N : Yt ≥ h} .

APPENDIX

Here we prove the following lemma.

Lemma A.1. For any general (not necessarily masked sym-
metric) fusion rule T ′({Xt}t≥1), there is a masked symmetric
rule T ({Xt}t≥1) that is not worse than T ′({Xt}t≥1).

Proof: The proof is a constructive one. We first define
π : [K] → [K] a masked permutation function that permutes
the first 2M entries while keeps the remaining |N | − M
entries unchanged. Let Π2M be the collection of all (2M !

in total) such π. For Xt = [X1
t , . . . , X

K
t ], we slightly abuse

the notation to write π(Xt) = [X
π(1)
t , . . . , X

π(K)
t ]. Let

T ({Xt}t≥1) =
1

2M !

∑
π∈Π2M

T ′({π(Xt)}t≥1). (16)

Following the proof of part 1 of [8, Lemma 4.2], one can show
that T ({Xt}t≥1) is indeed a masked symmetric strategy. Now
the detection delay D[T ({Xt}t≥1)] is

sup
s∈S,ν

ess supEsν

( 1

2M !

∑
π∈Π2M

T ′({π(Xt)}t≥1)− ν

)+ ∣∣∣∣Xν
1

 .
Thus D[T ({Xt}t≥1)] is no longer than

1

2M !

∑
π∈Π2M

sup
s∈S,ν

ess supEsν
[
(T ′({π(Xt)}t≥1)− ν)+|Xν

1

]
(a)
=

1

2M !

∑
π∈Π2M

sup
s∈S,ν

ess supEs◦π
−1

ν

[
(T ′({Xt}t≥1)− ν)+|Xν

1

]
(b)
=

1

2M !

∑
π∈Π2M

sup
s′∈S,ν

ess supEs
′

ν

[
(T ′({Xt}t≥1)− ν)+|Xν

1

]
=

1

2M !

∑
π∈Π2M

D[T ′({Xt}t≥1)] = D[T ′({Xt}t≥1)]. (17)

Note that essential supremum of the right-hand side of (a) is
taken under the probability measure whose density is specified
by (5) under θ = 0 and compromised group assignment s ◦
π−1. Then (a) can be proved similar to (9a) by the fact

Esν
[
(T ′({π(Xt)}t≥1)− ν)

+
∣∣∣ Xν

1

]
(x) =

Es◦π
−1

ν

[
(T ′({Xt}t≥1)− ν)

+
∣∣∣ Xν

1

]
(π(x)),∀x ∈ RK×ν

since the permutation π(.) is one-to-one; and (b) is due to
the fact that {s ◦ π−1|s ∈ S} = S. We can similarly
show that for the mean time to false alarm of the new rule,
A[T ({Xt}t≥1)] ≥ A[T ′({Xt}t≥1)]. Then we conclude that
the masked symmetric strategy T ({Xt}t≥1) is at least as good
as T ′({Xt}t≥1).
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