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Abstract—Sequential change point detection with multiple
decentralized sensors is studied. Each sensor makes a local
decision based on its own observations and reports it through a
bandlimited link to a fusion center, which then decides whether
the change has occurred. Since sensors in many applications such
as cyber-physical systems are prone to a number of attacks such
as Byzantine attacks, combating such a security breach becomes
one of the most crucial issues. Previous works on sequential
change detection under Byzantine attacks only focus on binary-
hypothesis case, which significantly limits the applicability. In
this paper, we consider the extension to the multi-hypothesis
setting. We show that naively extending the existing method
from the binary case to the multi-hypothesis one can result in
a catastrophic event preventing the fusion center from making
a conclusive decision. Thus we propose the other two new
methods by allowing each sensor to cast multiple local alarms,
and both can avoid this catastrophic event and improve the
asymptotic detection delay. In analyzing detection delays of our
multi-hypothesis schemes, we also show that for each hypothesis,
asymptotically, it suffices to focus on the competing hypothesis
that is closest in Kullback-Leibler distance. Through large sensor
analysis, we also show that as the number of honest sensors
grows, one of the proposed scheme, called the simultaneous rule,
approaches the optimal performance within a factor of 2.

I. INTRODUCTION

Cyber-physical systems (CPS), which integrate techniques
like communication and computation, are expected to provide
high stability and robustness to the next generation of systems
[1]. For example, the abnormal changes of voltage waveforms
in smart grids are harmful to delicate electronic devices and
recent advances of massive machine-type communications
(mMTC) or internet of things (IoT) [2] allow the usage of
advanced cyber-physical infrastructures for monitoring voltage
quality events [3].

In status monitoring of CPS and many other examples, to
quickly alarm the occurrence of an abnormal event is crucial.
Moreover, sensors, cheap and distributed across a field, are
prone to be compromised [4] and such security breaches
can result in catastrophic consequences [1], [4]. Hence, the
approach in [4], [5] that studies sequential change detection
with decentralized sensors in the presence of compromised
sensors forming a Byzantine attack is promising. While [4],
[5] consider the binary case, i.e. the abnormal event can have
only one state, in CPS such as smart grids, an abnormal event
typically has multiple states [3] and thus the aforementioned
techniques are inadequate.

In this paper, we tackle the problem of multi-hypothesis dis-
tributed sequential change detection under Byzantine attacks.

We first adapt the binary one-shot rule in [5] to a simple multi-
hypothesis decision rule by replacing the cumulative sums
(CUSUM) local decision algorithm adopted in the binary case
with the matrix CUSUM in [6]. The fusion center then declares
the abnormal hypothesis that receives enough local alarms.
However, with multiple abnormal hypotheses, the fusion center
may never be able to make a conclusive decision; since it is
possible that none of the hypotheses has enough local alarms
after all sensors report. Moreover, even in the absence of
the undecidable event, several bad observations could lead to
false isolation at some nodes, which could in turn significantly
increase the delay or trigger false isolation as each node only
gets to report once. Motivated by the disadvantages of the one-
shot scheme, we propose two new families of decision rules,
namely the multi-shot rule and the simultaneous rule. Both
families of decision rules adopt a “soft” version of matrix
CUSUM at sensors and allow each sensor to cast multiple
local alarms over time.

We perform the worst-case analysis in terms of the mean
time to false isolation/false alarm and detection delay for the
proposed fault-tolerant decision rules. The results show that
both the multi-shot and simultaneous rules outperform the
one-shot rule and effectively eliminate the possibility of the
undecidable event. Among the three schemes, the simultaneous
rule achieves the best performance but is the least energy-
efficient. In the course of detection delay analysis, we establish
a lemma (Lemma 1) indicating that even though there are
multiple possible hypotheses, for each hypothesis, each sensor
only has to worry about the competing hypothesis that is
“closest” in Kullback-Leibler (KL) distance [7]. This result
may be useful for further study of multi-hypothesis multi-
channel change detection problem. Large sensor analysis,
which is typically important for IoT applications, is also
carried out.The results not only offer guidance about how to
choose optimal parameters for our proposed rules, but also
indicate that the proposed simultaneous rule can approach the
optimal delay performance within a factor of 2.

For a positive integer K, define [K] := {1, . . . ,K} and
[K]+ = {0} ∪ [K]. Function (x)+ outputs x if x ≥ 0 and
zero otherwise. For two real functions f1(x) and f2(x), as
x→∞, we write f1(x) ∼ f2(x) when f1(x)/f2(x)→ 1 and
f1(x) & f2(x) when lim inf(f1(x)/f2(x)) ≥ 1. The o(.) and
w(.) follow the asymptotic notations in [8].
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II. PROBLEM FORMULATION

Consider a network with a fusion center and K distributed
sensors, indexed by [K], respectively. The fusion center tries
to monitor an abrupt event and decide whether the event has
occurred and which type it is. The observations of all K
sensors are sequences of independent random variables with
known distributions, subject to the same distribution change
at a unknown but deterministic time ν. After this distribution
change, there are Q different possible types. Specifically, let
P0 be the pre-change probability density function (PDF) and
P1, . . . , PQ the post-change PDF corresponding to the states
1, . . . , Q, respectively. For each k ∈ [K], we denote by Xk

t

the observation made by sensor k at time t. We can now define
Q + 1 different hypotheses as follows. Under the hypothesis
Hq , q ∈ [Q], the random variables Xk

1 , X
k
2 , . . . , X

k
ν−1 are

independent and identically distributed (i.i.d.) with the PDF
P0, while Xk

ν , X
k
ν+1, . . . are i.i.d. with the PDF Pq . Under the

hypothesis H0, Xk
t are i.i.d. with the PDF P0 for all t. We

write Xt = [X1
t , . . . , X

K
t ] for each t and denote by Xt2

t1 the
collection of Xt1 ,Xt1+1, . . . ,Xt2 for each t1, t2 with t2 > t1.

Among the sensors, there is an unknown subset N ⊂ [K]
of honest sensors, with the remaining M := K − |N | sensors
being compromised by the attacker. We assume that M the
exact number (or a maximum) of compromised sensors is
known, and it is less than the number of honest sensors, i.e.,
|N | ≥M . As [5], there is an noiseless link of a finite number
of bits associated with each sensor to the fusion center. Two
types of bandwidth constraints are considered; namely each
link has dlog2(Q)e bits and that has Q bits. At each time
index t, a honest sensor k makes a local decision individually
by mapping its own observations up to time t to an element
in X satisfying the bandwidth constraint. Depending on the
adopted reporting mechanism that will be discussed later and
the bandwidth constrain, each sensor decides whether it should
alarm the fusion center through the channel it is associated
with. The M compromised sensors, on the other hand, try to
disrupt/confuse the final decision of fusion center by sending
attack signals which again belong to X .

Let T q̂ be the stopping time where q̂ ∈ [Q] is the decision.
We allow T q̂ =∞, corresponding to the case when the fusion
center cannot make a conclusive decision. We sometimes
suppress the superscript q̂ and simply write T when only the
stopping time matters. Let g be an attack strategy of the M
compromised sensors. We assume that the attacker knows ν,
Xt

1, and the decision rule employed by the fusion center, and
hence g is a function of these arguments. We also write g = ∅
when all the compromised sensors are absent. When a change
under hypothesis Hq , q ∈ [Q], happens at time ν and the
strategy employed by the M compromised sensors is g, the
underlying probability measure is denoted by Pq,gν . Moreover,
when no change ever happens, i.e., ν = ∞, we denote
by Pq=0,g

∞ the underlying probability measure. Following the
single-sensor case in [6], [9], we consider the performance
metrics as follows:
• Detection Delay: The mean detection delay is given by

D[T ] := sup
q∈[Q]

sup
g,ν

ess supEq,gν [T − ν|T > ν,Xν
1 ]. (1)

• False Alarm: Without any abnormal changes, the mean
time to false alarm is given by

A[T ] := inf
g
Eq=0,g
∞ [T ]. (2)

• False Isolation: The mean time to false isolation is given
by

I[T ] := inf
q∈[Q]

inf
g

inf
q̂∈[Q]\{q}

Eq,g0 [T q̂]. (3)

Our objective is to design fault-tolerant decision rules such
that D[T ] can be minimized, with large I[T ] and A[T ].

III. PROPOSED FAULT-TOLERANT DECISION RULES

In this section, we first describe the local decision rule at
each honest sensor, and then propose three global fault-tolerant
decision rules adopted at the fusion center.

A. Local decision rule: “Soft” Matrix CUSUM
Since the honest sensors are not allowed to cooperate

with each other, it is natural to adopt the matrix CUSUM
algorithm in [6] as each sensor’s local decision rule, which
is known to be asymptotically optimal for the single-sensor
multi-hypothesis setting. The original matrix CUSUM in [6] is
reviewed as follows. At the sensor k ∈ N , for each hypothesis
q ∈ [Q], we compute the CUSUM statistics Y kt (q, j) for every
j 6= q ∈ [Q]+ at time t recursively through Y k0 (q, j) = 0

and Y kt (q, j) =
(
Y kt−1(q, j) + `kt (q, j)

)+
, where `kt (q, j) =

log
Pq(X

k
t )

Pj(Xk
t )

is the log-likelihood ratio (LLR) between Pq and
Pj . The results are put into a Q×Q matrix Yt with the qth
row given by

Yk
t := [Y kt (q, 0), · · · , Y kt (q, j), · · · , Y kt (q,Q)]. (4)

Let Y kt,q = minj∈[Q]+, j 6=q Y
k
t (q, j) be the minimum of the qth

row. The matrix CUSUM procedure proposed in [6] locally
determines that the event has occurred at the first time that
any Y kt,q′ , q

′ ∈ [Q] exceeds a pre-defined threshold h.
In [6], since there is only one node, it makes perfect sense

for the procedure to terminate after the alarm; however, in our
setting, the task is not done yet until the fusion center has
determined the occurrence of the event. Therefore, we adapt
the matrix CUSUM procedure to the “soft” version as follows.
Whenever a Y kt,q′ exceeds the threshold h at time index t,
the hypothesis Hq′ is softly decided by informing the fusion
center that this hypothesis is acceptable at the sensor k. Now
each honest sensor may keep monitoring the event and report
multiple hypotheses to the fusion center. Later in Sec. III-B,
this soft version will help us resolve the “undecidable event”,
which disables the fusion center to make a conclusive decision.

Formally, for the soft matrix CUSUM procedure, a hypoth-
esis Hq′ is acceptable by the node k at time

σq
′

k (h) := inf
{
t ∈ N : Y kt,q′ ≥ h

}
. (5)

In contrast, for the original matrix CUSUM [6], a hypothesis
Hq is hard decided at time

σ̃qk(h) :=


σqk(h), if σqk(h) = σk(h) := minq′∈[Q] σ

q′

k (h)

and q = argmaxq′∈[Q]

(
Y kt,q′ |t=σk(h)

)
,

∞, else
(6)



B. Fault-tolerant decision rules
As a baseline, the one-shot rule which uses the original

matrix CUSUM is first introduced. Then, the two proposed
rules based on the “soft” matrix CUSUM are presented.
1) One-shot d-th alarm τ̃(d)(h): This family of rules is a
direct extension of the one-shot rule for the binary case in [5]
to the multi-hypothesis setting. Each sensor adopts the original
matrix CUSUM [6] as its local report mechanism and reports
the first acceptable non-zero hypothesis as soon as the sensor
finds it. Formally, for each k ∈ N , sensor k alarms Hq∗ at the
time index σ̃q

∗

k (h), where σ̃q
∗

k (h) is the only finite time index
among all σ̃qk(h)s, q ∈ [Q] in (6). If a tie happens at a node
k, then among those q resulting in the same σ̃qk(h), the one
with the largest Y kt,q is reported. For the case that two or more
hypotheses observe same Y kt,q , we break the tie randomly. The
fusion center declares that an abrupt event has occurred at
the first time that a hypothesis, say Hq , has received d local
reports with Hq . It also declares that the hypothesis Hq is true.
2) Multi-shot d-th alram τ(d)(h): This family of rules
requires each sensor to adopt the soft version of matrix
CUSUM and to alarm whenever a hypothesis Hq , q ∈ [Q],
is acceptable. Formally, for each k ∈ N , sensor k reports Hq

at the time index σqk(h), for every q ∈ [Q]. In this reporting
mechanism, we stipulate that for each sensor, every hypothesis
can be reported at most once, and a reported hypothesis cannot
be withdrawn. In other words, once reported by a sensor, a
hypothesis will be promoted as a candidate by that sensor
ever since. If a tie happens at a honest node k, then all the
hypothesis indexes have the same σqk(h) will be reported one
after another, starting from the one with the largest Y kt,q . For
the case that two or more hypotheses observe same Y kt,q , we
break the tie randomly. Consecutive ties and/or multi-way ties
can be easily resolved by equipping each node with a queue
of size Q − 1 and clearing the queue on the first-come first-
serve basis. The fusion center declares that an abrupt event
has occurred at the first time that a hypothesis, say Hq , has
been deemed acceptable by d sensors. It also declares that the
hypothesis Hq is true.
3) Simultaneous d-th alarm Td(h): Each sensor constantly
transmits Q bits local decision at time index t to indicate
whether Hq is acceptable, ∀q ∈ [Q]. The fusion center declares
that an abrupt event of type q has occurred at the first time
that a hypothesis, say Hq , has been simultaneously accepted
by more than d sensors.

We note that all the decision rules T mentioned above are
non-decreasing functions in each of its argument (correspond-
ing to the entries of Yt) and the worst CUSUM statistic
that the pre-change observations can impose is Y kt (q, j) = 0;
hence, Lemma 3 in [5] can be applied to simplify the detection
delay in (1) into

D[T ] = sup
q∈[Q]

sup
g

Eq,g0 [T ]. (7)

Also, it is worth noting that the soft matrix CUSUM reduces
to the original CUSUM adopted in [5] when Q = 1, i.e. binary
hypothesis. Thus, the proposed multi-shot and simultaneous d-
th alarm include the one-shot and voting rules in [5] as special
cases, respectively.

Remark 1. We note that the three families of rules have
different bandwidth and/or energy requirements. The one-shot
scheme is the most bandwidth- and energy-efficient one as it
requires each link to support dlog2Qe bits and this link is
used only once. The multi-shot scheme also requires links to
support dlog2Qe bits while each link might be used at most
Q times. As for the simultaneous rule, it requires each link to
support Q bits and each link is constantly used.

IV. MAIN RESULTS

We now carry out the worst-case analysis on the per-
formance of the multi-shot d-th alarm and simultaneous d-
th alarm rules. For the one-shot d-th alarm, we point out
two notable differences compared to the binary counterpart
which not only makes the analysis more involved but also
significantly degrade the performance. First, for d > |N |/Q,
the undecidable event may happen; namely, it is possible
that there is no hypothesis index with enough local alarms
for making final decision even though all the honest sensors
have raised alarms; thereby, τ̃(d)(h) = ∞. Secondly, even
in the absence of compromised sensors, since each sensor
only gets to report at most once, the analysis becomes quite
involved when a tie happens. Of course, one can expect that the
probability of ties becomes negligible when h is large enough;
the precise analysis is required to make rigorous statement and
is left for future work. The performance analysis of τ̃(d) under
the assumption that there is no tie is provided in [10]. Due to
the space limitation, all the results are provided without proofs
except for Lemma 1. Please refer to [10] for the proofs.

To facilitate the discussion, some definitions are provided
first. Similar to [5], from (5), we define the ordered time
indexes over |N | honest sensors as if there is no compromised
sensor, for softly deciding hypothesis Hq (cf. the qth row of
CUSUM matrix (4)) as σq(1)(h) ≤ . . . ≤ σq(|N |)(h), q ∈ [Q].

We also let Sq` (h) be the first time that the hypothesis Hq is
simultaneously softly-decided by ` honest sensors as

inf
{
t ∈ N :Y kt,q ≥ h ∀k ∈L, for someL⊂ [N ], |L| = `

}
(8)

Finally, we will use Eqν to represent the expectation when the
change with hypothesis index q happens at time ν and the
compromised sensors are absent.

To perform the worst-case analysis, we assume that all
the compromised sensors know the actual ν and the actual
hypothesis q. They can then collaboratively attack/confuse the
fusion center. Thus, it is obvious that choosing any d ≤ M
is bad for false alarm and and false alarm in (2) and (3),
respectively, while any d > |N | is bad for detection delay in
(7). We therefore confine the choice of d to some reasonable
region and obtain the following result.

Proposition 1. Fix h > 0. For any Q, and d ∈ {M +
1, ..., |N |}, for multi-shot d-th alarm, we have

I[τ(d)(h)] ≥ min
q∈[Q]

min
q̂∈[Q]\{q}

Eq,∅0 [σq̂(d−M)(h)], (9)

A[τ(d)(h)] ≥ min
q

Eq=0,∅
∞ [σq(d−M)(h)], (10)

D[τ(d)(h)] ≤ max
q

Eq,∅0 [σq(d)(h)] +Q− 1; (11)



while for simultaneous d-th alarm

I[Td(h)] = min
q∈[Q]

min
q̂∈[Q]\{q}

Eq,∅0 [S q̂d−M (h)]; (12)

A[Td(h)] = min
q

Eq=0,∅
∞ [Sqd−M (h)]; (13)

D[Td(h)] ≤ max
q

Eq,∅0 [Sqd(h)]. (14)

Note that for the multi-shot d-th alarm rule, we only provide
lower bounds on the mean time to false alarm/isolation because
of ties. Also, for both families of rules, only upper bounds on
the delay performance are provided because the definitions
of detection delay in (1) and (7) do not require the alarmed
hypothesis to be the true one, but our analysis in Proposition 1
does. Moreover, the Q−1 in (11) is longest extra delay caused
by ties. Based on Proposition 1, in what follows, we provide
explicit upper and lower bounds on the detection delay and
the mean time to false isolation/alarm, respectively.

A. False alarm/isolation analysis

The asymptotic performance of the mean time to false
alarm/isolation of the proposed families of rules are given in
the following. Please see [10] for the proofs.

Theorem 1. Fix h > 0. If M < d ≤ |N |, both the mean
time to false isolation I[τ(d)(h)] in (9) and the mean time to
false alarm A[τ(d)(h)] in (10) for the multi-shot d-th alarm
are lower-bounded by

d−M
(d−M + 1)

(
|N |
d−M

) −1
d−M

exp(h). (15)

Theorem 2. Fix h > 0. If M < d ≤ |N |, both the mean time
to false isolation I[T(d)(h)] in (12) and the mean time to false
alarm A[T(d)(h)] in (13) are lower-bounded by

1

2

(
|N |
d−M

)−1
exp ((d−M)h) . (16)

B. Detection delay analysis

For analyzing the delay performance, it is intuitive that for
each hypothesis q ∈ [Q], although there are total Q + 1
hypotheses, one only has to worry about the one that is
“closest” to q. However, delay analysis is more involved
and thus in the following we resort to the asymptotic anal-
ysis where h → ∞. We make this observation precise
in terms of the KL distance in Lemma 1 whose proof
is presented in Appendix A. To this end, we define for
each pair of q, j ∈ [Q]+, q 6= j, the KL distance from
Pj to Pq as I(q, j) :=

∫
log (Pq(x)/Pj(x))Pq(x)dx. Let

σ2(q, j) be the second moment of I(q, j) as σ2(q, j) :=

Eq
[
(log (Pq(x)/Pj(x))− I(q, j))2

]
. Then we assume:

Assumption 1. For any q ∈ [Q],
(i) 0 < I(q, j) <∞ and σ2(q, j) <∞, ∀j ∈ [Q]+, j 6= q.

(ii) Let Iq := min0≤j≤Q, j 6=q I(q, j). Assume Iq admits a
unique minimizer j∗ ∈ [Q] \ {q}.

By writing Pq for Pq,g=∅0 , we have:

Lemma 1. Suppose h is large enough and Assumption 1 holds.
For any q ∈ [Q], it holds Pq-a.s. that
(i) The first time Hq is softly decided at the honest sensor k,
σqk(h) in (5), equals to

σq,j
∗

k (h) := inf{t ∈ N : Y kt (q, j
∗) ≥ h}. (17)

(ii) For any |N | ≥ d ≥ 1, the first time Hq is simultaneously
softly-decided by d honest sensors, Sqd(h), equals to

Sq,j
∗

d (h) := inf
{
t ∈ N : Y

(|N |−d+1)
t (q, j∗) ≥ h

}
, (18)

where the ordered CUSUM statistics Y kt (q, j
∗)s for hypotheses

q and j∗, at time t, are Y (1)
t (q, j∗) ≤ . . . ≤ Y |N |t (q, j∗).

We now present the results on the asymptotic delay perfor-
mance. Let Z(1), Z(2), . . . , Z(|N |) be the order statistics of
standard independent normal random variables. For each d ∈
{1, 2, . . . , |N |}, we denote by ξd the expected value of Z(d).

Moreover, for each q ∈ [Q], we set Dq
d:|N | := ξd

√
σ2(q,j∗)
Iq .

Theorem 3. Suppose Assumption 1 holds. As h → ∞, for
any q ∈ [Q] and 1 ≤ d ≤ |N |, we have Eq,∅0 [σq(d)(h)] =
h
Iq +D

q
d:|N |
√
h(1+o(1)), and the detection delay of the multi-

shot d-th alarm in (11) is upper-bounded as

D[τ(d)(h)] ≤ max
q

(
h

Iq
+Dq

d:|N |

√
h(1 + o(1))

)
. (19)

Theorem 4. Suppose Assumption 1 holds. As h → ∞, for
any q ∈ [Q] and 1 ≤ d ≤ |N |, we have Eq,∅0 [Sqd(h)] ≤
h
Iq + Dq

d:|N |
√
h(1 + o(1)), and the detection delay of the

simultaneous d-th alarm in (14) is upper-bounded as

D[Td(h)] ≤ max
q

(
h

Iq
+Dq

d:|N |

√
h(1 + o(1))

)
. (20)

Although the upper bounds in Theorems 3 and 4 are
identical, we will show the superiority of the simultaneous
rule in the next section when detection delay and mean time
to false alarm/isolation are jointly considered.

Remark 2. Another application of Lemma 1 is to simplify the
computation at the honest sensors. Asymptotically, it suffices
to compute one CUSUM statistics Y kt (q, j

∗) out of those in
(4). An numerical example to validate this observation is given
in [10, Remark IV.1].

V. DISCUSSIONS

We compare the performance of the two proposed rules
with a large number of sensors under Assumption 1. Note that
unlike the analysis in [5], the term Dq

d:|N |
√
h in (19) may not

be neglected even when h→∞.

Corollary 1. For the multi-shot d-th alarm τ(d)(h) with d >
M , one can ensure I[τ(d)(h)] ≥ γ and A[τ(d)(h)] ≥ γ by
selecting

h = log γ +
1

d−M
log

(
|N |
d−M

)
+ log

(
d−M + 1

d−M

)
.

Moreover, when |N | → ∞ and γ = ω(|N |), the optimal d
minimizing D[τ(d)(h)] is d∗ =M + 1.



Corollary 2. For simultaneous d-th alarm Td(h) with M <
d ≤ p|N |, p ∈ (0, 1], one can ensure I[Td](h) ≥ γ and
A[Td](h) ≥ γ by selecting

h =
1

d−M

(
log γ + log

(
2

(
|N |
d−M

)))
. (21)

Moreover, when |N | → ∞ and
√
log γ ∼ |N |, D[Td̃(h)] ∼

2|N |/I∗, where d̃ =M + d 12 |N |e.

One can rigorously show when M ≤ |N |/2−1 and |N | → ∞,
the corresponding detection delay upper-bound on D[Td̃(h)]
is strictly smaller than that on D[τ(d∗)(h)]. Please refer to
[10, Remark V.1] for details. This shows the superiority of
the simultaneous rules over the multi-shot rules. Moreover,
by revealing the identities of all honest sensors to the fusion
center and adapting the techniques in [11] to the multi-
hypothesis case, we obtain a simple converse as follows:

Proposition 2. For any T with both I[T ] ≥ γ and A[T ] ≥ γ,
as γ →∞, D[T ] & log γ

|N |I∗ .

Now, when
√
log γ ∼ |N |, one observes that the scaling with

respect to |N | in Corollary 2 and that in Proposition 2 are
within a factor of 2.

We now study the asymptotic performance for fixed |N |.

Corollary 3. For any |N | > M , by plugging the threshold in
(21) with d = |N | into (20), one shows an achievability on
the first-order asymptotic delay as

D[T|N |(h)] ∼
log(γ)

(|N | −M)I∗
. (22)

Encouraged by our recent success of proving a tight con-
verse for the binary case in [12], we believe that the converse
in Proposition 2 is not tight and (22) is the optimal asymptotic
performance. We leave the proof as future work.

APPENDIX A
PROOF OF LEMMA 1

Fix q ∈ [Q] and k ∈ N . For any j ∈ [Q]+ with j 6= q, the
CUSUM statistics Y kt (q, j) at sensor k can be decomposed as
Y kt (q, j) = Zkt (q, j) + ξkt (q, j), where

Zkt (q, j) :=

t∑
s=1

log

(
Pq(X

k
s )

Pj(Xk
s )

)
, ξkt (q, j) := − min

0≤s<t
Zks (q, j).

Under Pq , Zk(q, j) is a random walk with drift I(q, j) >
0 and variance σ2(q, j) < ∞. It follows that Zkt (q),
defined as (Zkt (q, 1), . . . , Z

k
t (q, q − 1), Zkt (q, 0), Z

k
t (q, q +

1), . . . , Zkt (q,Q)), is a Q-dimensional random walk. Also
Y kt (q), which is similarly defined as Zkt (q) by replacing
Zkt (q, j) with Y kt (q, j), is a Q-dimensional perturbed random
walk, as discussed in [13, Section 6.10]1.

Now for any j ∈ [Q]+ with j /∈ {q, j∗}, at time index
σq,j

∗

k (h) in (17), the CUSUM statistics for hypotheses (q, j)

Y k
σq,j∗
k (h)

(q, j)

h
→ I(q, j)

I(q, j∗)
=
I(q, j)

Iq
as h→∞, Pq-a.s.,

1Note that while the exposition in [13, Section 6.10] focuses on two-
dimensional perturbed random walks, the same results there can be generalized
to multi-dimensional cases as stated in [13, Remark 10.1, p. 208].

by [13, Theorem 10.1, p.206]. This, together with Assump-
tion 1, implies that it holds Pq-a.s. that ∀j ∈ [Q]+ \ {q, j∗}

Y k
σq,j∗
k (h)

(q, j)

h
> 1, (23)

as h is large enough. Now, observe that from (5), σqk(h) =
inf
{
t ∈ N : min0≤j≤Q, j 6=q Y

k
t (q, j) ≥ h

}
, and the RHS

equals to

inf

{
t ∈ N : min

0≤j≤Q, j /∈{q,j∗}
Y kt (q, j) ≥ h and Y kt (q, j

∗) ≥ h
}

= σq,j
∗

k (h), as h is large enough, Pq-a.s.,

where the last line follows from (23). Since this relation is
true for all k ∈ N and N is a finite set, we conclude that
σqk(h) = σq,j

∗

k (h) for all k ∈ N as h is large enough, Pq-a.s.
This concludes the proof for part (i).

For part (ii), from (8), Sqd(h) is equal to

inf
{
t ∈ N : min

0≤j≤Q, j 6=q
Y kt (q, j) ≥ h ∀k ∈ L,

for some L ⊂ [N ], |L| = d
}
.

Then from (23), Sqd(h) becomes

inf
{
t ∈ N :Y kt (q, j

∗) ≥ h ∀k ∈L, for someL⊂ [N ], |L|=`
}

= inf
{
t ∈ N : Y

(K−d+1)
t (q, j∗) ≥ h

}
.

Then as h→∞, Pq-a.s. we have Sqd(h) = Sq,j
∗

d (h).
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