
Chapter 1

Brief Summary of Finite Difference
Methods

This chapter provides a brief summary of FD methods, with a special emphasis on the aspects that will
become important in the subsequent chapters.

1.1 Finite Difference formulas

Finite differences (FD) approximate derivatives by combining nearby function values using a set of weights.
Several different algorithms for determining such weights are mentioned in Sections 1.1.1 - 1.1.5. In the very
simplest case, illustrated in Figure 1.1, we use the mathematical definition of a derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(1.1)

to arrive at a two-node FD formula.
Taylor expansion of (1.1) shows that

f(x+ h)− f(x)

h
= f ′(x) +

h

2!
f ′′(x) +

h2

3!
f ′′′(x) + . . . = f ′(x) +O(h1),

i.e. the approximation f ′(x) ≈ f (x+h)−f (x)
h is accurate to first order. The FD weights at the nodes x and

x+ h are in this case [−1 1] / h. The FD stencil can graphically be illustrated as

© ← entry for f ′, value {1}
� � ← entries for f , values {− 1

h ,
1
h}

↑ ↑
x x+ h ← spatial locations

. (1.2)

The open circle indicates a (typically) unknown derivative value, and the filled squares (typically) known
function values. While the compactness of this approximation is convenient (it uses only two adjacent
function values), its low order of accuracy (first order; exact only for polynomials up to degree one) makes it
almost entirely useless for practical computing. Before considering the application of FD formulas to tasks
such as approximating ODEs and PDEs (ordinary and partial differential equations), we consider next some
different procedures for creating higher order FD approximations.

1.1.1 Some direct approaches for generating FD stencils

The three approaches described next are flexible and conceptually quite straightforward, but also rather
inefficient in terms of their operation count. Even so, it should be noted that the linear systems approach
(Section 1.1.1.3) will become prominent later in the RBF and RBF-FD contexts. For simplicity of notation,
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2 CHAPTER 1. BRIEF SUMMARY OF FINITE DIFFERENCE METHODS

Figure 1.1: Illustration of the approximation f ′(x) ≈ rise

run
= f (x+h)−f (x)

h , increasingly accurate as h→ 0.

we do not describe the approaches in their most general form, but choose the specific example of finding the
weight vector [− 1

2 0 1
2 ]/h in the second order approximation to the first derivative

f ′(x) ≈
− 1

2f (x− h) + 1
2f (x+ h)

h
. (1.3)

1.1.1.1 Derivative of Lagrange’s interpolation polynomial

The value for x does not influence the weights in a formula such as (1.3), so we can assume that the stencil
is centered at x = 0. The Lagrange interpolation polynomial p(x), taking the desired values at the nodes
x = −h, 0, h, becomes

p(x) = (x−0)(x−h)
(−h−0)(−h−h)f(−h) + (x+h)(x−h)

(0+h)(0−h) f(0) + (x+h)(x−0)
(h+h)(h−0)f(+h).

Differentiating this polynomial with respect to x and then setting x = 0 gives p′(0) = (− 1
2f(−h) + 0 f(0) +

1
2f(+h))/h, in agreement with (1.3).

1.1.1.2 Taylor expansions

Expressing f(−h), f(0), f(h) by Taylor expansion around x = 0 gives f(−h) = f(0)− h
1!f
′(0) + h2

2! f
′′(0)−+ . . .

f(0) = f(0)

f(h) = f(0) + h
1!f
′(0) + h2

2! f
′′(0) + . . .

. (1.4)

We want to find weights w−1, w0, w1 such that

w−1f(−h) + w0f(0) + w1f(h) = 0 f(0) + 1 f ′(0) + 0 f ′′(0) + . . .

Using the expansions from (1.4) and equating coefficients for f(0), f ′(0), f ′′(0) gives rise to a linear system
to solve for the unknown coefficients 1 1 1

− h
1! 0 h

1!
h2

2! 0 h2

2!

 w−1
w0

w1

 =

 0
1
0

 , (1.5)

with the solution w−1 = − 1
2h , w0 = 0, w1 = 1

2h .
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1.1.1.3 Use of monomial test functions

Continuing with the same example, we want the formula f ′(0) ≈ w−1f(−h) + w0f(0) + w1f(h) to be exact
for as high degree polynomials as possible. Enforcing it in turn for the monomials f = 1, f = x and f = x2

gives
f = 1 ⇒ w−1 +w0 +w1 = 0
f = x ⇒ w−1(−h) +w1(h) = 1
f = x2 ⇒ w−1(−h)2 +w1(h)2 = 0

,

equivalent to (1.5).
In the more general case of finding the weights w1, w2, . . . , wn to use at locations x1, x2, . . . , xn for

approximating a linear operator L at some location x = xc, we similarly solve the system
1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...
xn−11 xn−12 · · · xn−1n



w1

w2

...
wn

 =


L 1|x=xc

L x|x=xc

...
L xn−1|x=xc

 (1.6)

The successive lines of this system enforce that the set of weights lead to the correct result for the functions
1, x, x2, . . . , xn−1 and thus, by linearity, for all polynomials up through degree n − 1. This direct linear
systems approach is very flexible and easy to implement. However, it is not computationally fast (O(n3)
operations), and the coefficient matrix can become ill-conditioned. It will however become the primary
approach in the context of RBF methods.

1.1.2 Padé-based algorithm for equispaced grids

When the nodes have a uniform spacing h (as has been the case in the examples above), a particularly short
symbolic algebra algorithm was presented in 1998 [9]. We generalize the stencil (1.2) to

Here, the numbers s, d, and n describe the stencil shape. In the illustration above, these take the values
3/2, 3, and 7, respectively. The weights, one at each node point, relate nodal values of the mth derivative of
f with the nodal values of the function f . In Mathematica (version 7 and higher) the complete code is

t = PadeApproximant[x
s
(Log[x]/h)

m
,{x,1,{n,d}}];

CoefficientList[{Denominator[t],Numerator[t]},x]

with similar codes in other symbolic languages. The following are three typical applications of this algorithm:

Example 1. The choices s = 1, d = 0, n = 2, m = 2 describe a stencil of the shape
©

� � �
for

approximating the second derivative (since m = 2). The algorithm produces the output{{
h2
}
, {1,−2, 1}

}
,

corresponding to the explicit 2nd order accurate formula for the second derivative

f ′′(x) ≈ {f(x− h)− 2f(x) + f(x+ h)} 1

h2
. (1.7)
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order weights
2 − 1

2 0 1
2

4 1
12 − 2

3 0 2
3 − 1

12
6 − 1

60
3
20 − 3

4 0 3
4 − 3

20
1
60

8 1
280 − 4

105
1
5 − 4

5 0 4
5 − 1

5
4

105 − 1
280

... ↓ ↓ ↓ ↓
... ↓ ↓ ↓ ↓

limit · · · 1
4 − 1

3
1
2 -1 0 1 − 1

2
1
3 − 1

4 · · ·

Table 1.1: Weights for centered FD approximations of the first derivative on an equispaced grid (omitting
the factor 1/h).

Example 2. The choices s = 0, d = 2, n = 2, m = 2 describe a stencil of the shape
© © ©
� � �

, again

for approximating the second derivative (since m = 2). The algorithm produces the output{{
h2

12
,

5h2

6
,
h2

12

}
, {1,−2, 1}

}
corresponding to the compact (implicit) 4th order accurate formula for the second derivative

1

12
f ′′(x− h) +

5

6
f ′′(x) +

1

12
f ′′(x+ h) ≈ {f(x− h)− 2f(x) + f(x+ h)} 1

h2
. (1.8)

Example 3. The choices s = −2, d = 2, n = 1, m = 1 describe a stencil of the shape
© © ©

� �
for approximating the first derivative. The output{{

5h

12
,− 4h

3
,

23h

12

}
, {−1, 1}

}
is readily rearranged into

f(x+ h) = f(x) +
h

12
(23f ′(x)− 16f ′(x− h) + 5f ′(x− 2h)) , (1.9)

which we later (in Section 1.2.1.2) will encounter as the third order Adams-Bashforth method for solving
ODEs.

In every case, the weights will be the optimal ones with regard to formal order of accuracy. The algorithm
is particularly convenient to use when only a small number of stencils are considered, and when one wants
to obtain the weights in exact rational form rather than as floating point numbers.

Table 1.1 shows the lowest order centered FD formulas for the first derivative, and Table 1.2 for the
second derivative. The existence of infinite order limits (indicated by the bottom line in each of the two
tables) will play a key role in Section ?? when we introduce PS methods.

The special case illustrated in Example 3 can be generalized to include all the main classes of linear
multistep methods. With m = 1 and accuracy order p ≥ 1, the appropriate settings for s, d, and n become

Adams-Bashforth (AB) s = 1− p, d = p− 1, n = 1.
Adams-Moulton (AM) s = 2− p, d = p− 1, n = 1.
Backward Differentiation (BD) s = p, d = 0, n = p.
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order weights
2 1 −2 1
4 − 1

12
4
3 − 5

2
4
3 − 1

12
6 1

90 − 3
20

3
2 − 49

18
3
2 − 3

20
1
90

8 − 1
560

8
315 − 1

5
8
5 − 205

72
8
5 − 1

5
8

315 − 1
560

... ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
limit · · · − 2

42
2
32 − 2

22
2
12 −π

2

3
2
12 − 2

22
2
32 − 2

42 · · ·

Table 1.2: Weights for centered FD approximations of the second derivative on an equispaced grid (omitting
the factor 1/h2).

1.1.3 Algorithms for arbitrarily spaced grids

FD approximations based on equispaced grids are very accurate when they are centered (extending equally
far to both sides), but tend to lose accuracy when boundaries are approached and they have to become
increasingly one-sided. The common remedy is to gradually cluster nodes more densely as the boundary is
approached, as will be discussed further in Section ??. A number of effective algorithms for calculating FD
weights are available for such (non-equispaced) cases.

1.1.3.1 FD approximations at select points

We consider here first the case when one merely wants a few stencils. In the case of nodes located at
xi, i = 1, 2, . . . , n, one can obtain the weights for dp/dxp|x=z, p = 0, 1, . . . ,m (where the location z may or
may not coincide with any of the node locations) by means of

function c = weights(z,x,m)

% Calculates FD weights. The parameters are:

% z location where approximations are to be accurate,

% x vector with x-coordinates for grid points,

% m highest derivative that we want to find weights for

% c array size (m+1,lentgh(x)), containing (as output) in

% successive rows the weights for derivatives 0,1,...,m.

n = length(x); c = zeros(m+2,n); c(2,1) = 1; x1 = x(ones(1,n),:); A = x1’-x1;

b = cumprod([ones(n,1),A],2); rm = cumsum(ones(m+2,n-1))-1; d = diag(b); d(1:n-1) = d(1:n-1)./d(2:n);

for i = 2:n

mn = min(i,m+1);

c(2:mn+1,i) = d(i-1)*(rm(1:mn,1).*c(1:mn,i-1)-(x(i-1)-z)*c(2:mn+1,i-1));

c(2:mn+1,1:i-1) = ((x(i)-z)*c(2:mn+1,1:i-1)-rm(1:mn,1:i-1).*c(1:mn,1:i-1))./(x(i)-x1(1:mn,1:i-1));

end

c(1,:) = [];

For example, the statement weights(0,−2 : 2,6) returns the output

0 0 1.0000 0 0

0.0833 -0.6667 0 0.6667 -0.0833

-0.0833 1.3333 -2.5000 1.3333 -0.0833

-0.5000 1.0000 0 -1.0000 0.5000

1.0000 -4.0000 6.0000 -4.0000 1.0000

0 0 0 0 0

0 0 0 0 0 0

This output shows the optimal weights to be applied to function values at x = −2, −1, 0, 1, 2, for
approximating the 0th up through the 6th derivative at x = 0. Since the approximation point z coincides
with one of the data points, the top line tells the obvious fact that the most accurate ‘interpolation’ is to
just use that data value. We recognize lines 2 and 3 from the 4th order approximations in Tables 1.1 and
1.2, respectively. The last two lines are all zero, reflecting the fact that there exist no formulas for the 5th

and 6th derivative that extend over only five node points.
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The derivation of the algorithm, given in [7, 9], is based on recursions that follow from Lagrange’s
interpolation formula. If one also wants weights for shorter stencil widths (based on xi, i = 1, 2, . . . , ν; ν =
1, 2, . . . , n), these can be picked up ‘for free’, as otherwise discarded intermediate results after each step in
the loop for i = 2:n. In that case, the algorithm costs only 4 arithmetic operation per calculated weight. If
these shorter stencils are not wanted, the weights algorithm presented in [27] has a somewhat lower operation
count, and can be coded particularly efficiently in C++. However, that code is much longer and it runs in
Matlab several times slower than the present algorithm.

1.1.3.2 Algorithms for differentiation matrices (DMs)

In case one wants to employ global FD stencils (extending over all the nodes; the case with non-periodic
PS methods), one typically needs a sequence of weight sets, providing approximations that are accurate at
each of the nodes xi in turn. Repeated use of the algorithm in Section 1.1.3 would be comparatively slow
for producing such differentiation matrices (DMs), as it would not utilize the fact that the many separate
cases are all based on the same node set. Several specialized algorithms for calculating such DMs have been
presented [18, 32]. The algorithm and MATLAB code by Weideman and Reddy is often preferred, and is
downloadable from the web [31]. Once a DM has been calculated, the derivative approximations at all the
nodes are obtained by a single matrix×vector multiplication u(m)(x1)

...
u(m)(xn)

 ≈
 DM


 u(x1)

...
u(xn)

 .

1.1.4 Errors when applying FD formulas to given functions

The application of FD formulas gives rise to different types of errors:

Truncation errors: These are expressed by the leading error terms that we have quoted above, such
as O(h2), O(h4), etc. In most applications, higher orders (especially above second order) are preferable. We
will introduce PS methods as the limit of increasing order FD methods.

Rounding errors: The numerator in an approximation such as (1.7) can in standard arithmetic be
evaluated to an accuracy of 10−16, i.e. if the stencil involves a division by h2, the rounding error becomes
O(10−16/h2).

Total error: The best accuracy is usually obtained when h is chosen so that the two error types above
match. In the present example, O(h2) matches O(10−16/h2) when h ≈ 10−4, producing a total error around
10−8. Higher order FD methods fare better in this type of analysis, but higher derivatives make the situation
much worse since, for the pth derivative, the rounding error becomes of the form O(10−16/hp). FD formulas
are for this reason only rarely used for derivatives beyond the third or fourth.

In the case of FD formulas for analytic functions, there are some options available for greatly reducing the
rounding errors: If a function is known to be analytic, and it can be computed also for complex arguments,
Cauchy’s integral formula leads to FD approximations that do not use points along the real axis but instead
(for example) around a circle in the complex plane, centered at the location at which we want the derivative
approximation. In this case, good accuracy does not require the circle radius to be small, and it turns out
that also high order derivatives (say, the 50th or the 100th) become numerically available to high precision
[2, 6, 22]. In a different approach, applicable only when a function f(x) is analytic and real-valued for x
real, and one only wants the first derivative f ′(x) for such an x-value, Cauchy-Riemann’s equations tell us
that one equivalently can evaluate the derivative in the imaginary direction. Regular FD approximations
will then not suffer the usual floating point cancellations as h→ 0, and machine precision is readily achieved
[28]. This approach has later become known as the ‘Complex Step’ method. It can also be noted that, for
analytic functions that satisfy simple ODEs (thus excluding important classes of functions such as those
involving Γ(x), ζ(x), etc.), derivatives of any order can be calculated recursively [1].
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1.1.5 Generalizations to more than 1-D

1.1.5.1 Cartesian lattices

On an (x, y)-grid, any mixed derivative, such as ∂3

∂x∂y2 , is most easily approximated by a stencil that amounts
to approximating in the two directions in sequence. Just as in the case of analytic differentiation, the result
will not depend on in which order the partial derivations were carried out. The combined procedure can
directly be formulated in terms of a 2-D stencil.

Example 1. Create the second order centered approximation for ∂3

∂x∂y2 . Multiplication of the stencils

for ∂2

∂y2 and ∂
∂x (from Tables 1.2 and 1.1, resp.) gives 1

−2
1

 /h2 × [
− 1

2 0 1
2

]
/h =

 − 1
2 0 1

2
1 0 −1
− 1

2 0 1
2

 /h3.
Example 2. Create second and fourth order approximation of the 2-D Laplace operator

L =
∂2

∂x2
+

∂2

∂y2
.

Based on the top two lines in Table 1.2, the 1-D formulas (1.7) for ∂2

∂x2 of accuracies O(h2) and O(h4) can
be written

[1 − 2 1] /h2 ,

[− 1

12

4

3
− 5

2

4

3
− 1

12
] /h2.

Applying these operators in the x- and y-directions and adding the results leads directly to the 2-D coun-
terparts (accurate to orders O(h2) and O(h4), respectively):

 1
1 −4 1

1

 /h2 and


− 1

12
4
3

− 1
12

4
3 −5 4

3 − 1
12

4
3

− 1
12

 /h2. (1.10)

PS methods pursue this stencil construction concept in Example 2 to still higher orders. However, in the
context of solving PDEs, this approach might not be optimal, as seen in the examples of Section 1.2.2, and
again (from a different perspective) in Section ??.

1.1.5.2 Hexagonal grids

With a specified distance h between adjacent nodes in 2-D, this grid type provides the densest possible node
arrangement. However, boundary conditions may become more difficult to implement, and it also becomes
less clear how to best approximate simple derivatives, such as ∂

∂x and ∂
∂y (since both of these cannot be

aligned with the primary grid directions). Nevertheless, FD approximations can become pleasingly simple.

For example, the Laplacian operator ∂2

∂x2 + ∂2

∂y2 on a hexagonal node set with the six nodes adjacent to (0, 0)

located at (±h, 0), (± 1
2h,±

√
3
2 h) can be approximated by 1 1

1 −6 1
1 1

 / ( 3
2h

2), (1.11)

accurate to O(h2). We will study the accuracy of this approximation further in Example 2, Section 1.2.2.
Our main interest in hexagonal grids will arise later in the context of RBF and RBF-FD methods. Both

hexagonal and quasi-random (e.g. ‘Minimal Energy’ distributed) node layouts then become very easy to
work with, and it will transpire that they can offer advantages over Cartesian-based ones.



8 CHAPTER 1. BRIEF SUMMARY OF FINITE DIFFERENCE METHODS

1.2 Application of FD formulas to PDEs

The idea of using FD approximations for numerical solutions of PDEs was first proposed by L.F. Richardson
in 1911 [24]. In a revolutionary paper, he notes that ”Step-by-step arithmetical methods of solving ordinary
differential equations have long been employed...” and he then proceeds with generalizing this concept to
2-D. After a flawless equilibrium calculation of the stresses in a cross-section of the first Aswan Dam over
the Nile, he looks to the future: ”The extension to three variables is, however, perfectly obvious. One has
only to let the third variable be represented by the number of the page of a book of tracing paper.” Although
our computational hardware is now far more powerful than pencil and paper, the basic concept of FD
approximations for PDEs remains the same.

1.2.1 Time dependent PDEs

If a PDE is time dependent,

∂u

∂t
= F (u, ux, uy, . . . , {maybe higher spatial derivatives})

the most straightforward FD approach is to place a Cartesian grid over the spatial domain. Given an ap-
proximation for u at time t, F is approximated at all interior nodes (with boundary information incorporated
as needed), and an ODE solver is invoked to advance in time the resulting coupled ODE system (featuring
a separate ODE for each node point). This general approach is known as the Method of Lines (MOL). Its
main advantages include:

• Easy to reach high accuracy (and thereby high computational efficiency) in both space and time,

• Easy to interchange ODE solvers (such as explicit, implicit, different orders, etc.)

• Reduced need for user input with regard to time step selection, error control, etc.

Example 1. Create an FD scheme for the 1-D heat equation ∂u
∂t = ∂2u

∂x2 with the smallest possible stencil
size. This FD approximation would become

u(x, t+ k)− u(x, t)

k
=
u(x− h, t)− 2u(x, t) + u(x+ h, t)

h2
. (1.12)

This stencil can in the (x, t)-plane be illustrated as
�

� � �
. This amounts to a MOL approximation,

using the top line in Table 1.2 for the spatial approximation, and then time stepping with the Forward Euler
method (also known as AB1, or Adams-Bashforth of first order). The accuracy becomes O(k) +O(h2), i.e.
the scheme is first order accurate in time and second order accurate in space.

The four key concepts with regard to FD approximations to time dependent PDEs are Convergence,
Accuracy, Consistency, and Stability. These are connected by the Lax Equivalence Theorem: For a well
posed linear problem a consistent approximation is convergent if and only if it is stable. Consistency only
requires that the FD formula, when k and h → 0, approximates the PDE; first order accuracy in both
directions suffice. Hence, stability (ensuring that the numerical approximation does not diverge to infinity
within finite time) becomes the key property to test for.

For an explicit time stepping scheme, such as in Example 1 above, the numerical approximation at any
fixed time t > 0 will diverge to infinity when the step sized k and h are decreased, unless a certain relation
between k and h is satisfied, namely k/h2 ≤ 1

2 . There are three main methods to determine such stability
conditions. Two of these will be described below. In cases of nonlinearities, variable coefficients, and non-
trivial boundary conditions, a third approach - energy methods - is often the only available option. However,
its generality usually comes at the price of significant algebraic complexity. A brief summary (focusing
on the same case in Example 1) is given in [8], Appendix H. More extensive treatments can be found in
[15, 25]. Even when the assumptions of the two approaches below are not fully satisfied, they still often give
good indications when applied to suitably simplified equations (e.g. after linearization of nonlinear terms,
assumption of spatial periodicity, etc.) The influence of boundary conditions on stability is discussed in [29].
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1.2.1.1 von Neumann stability analysis

This approach is strictly applicable only on periodic or infinite domains, and with constant coefficients in the
PDE. At time level t, let the numerical solution be a combination of modes u(x, t) = σt/keiωx, where σ is the
factor by which this mode grows in amplitude for each time step. Substitution into (1.12) gives, after some
simplifications, σ = 1− 4 k

h2 sin2
(
ωh
2

)
. For the solution to stay bounded, we need |σ| ≤ 1 to hold for all ω in

the range |ω| ≤ π/h (all modes that can be represented on a grid with spacing h). The stability condition
thus becomes k/h2 ≤ 1

2 (as σ then, for all the ω-values, will become confined to the interval [−1, 1]).

1.2.1.2 ODE stability domains

Each numerical ODE integration technique has an associated stability domain - the region in a complex
ξ-plane, with ξ = λk, for which the ODE method does not have any growing solutions when it is applied to
the constant coefficient ODE

y′ = λy . (1.13)

Example 2. Find the stability domain for Forward Euler. This scheme y(t+ k) = y(t) + ky′(t) becomes
in the case of (1.13) y(t+ k) = (1 + λk)y(t). With ξ = λk, the stability domain thus becomes |1 + ξ| ≤ 1, a
circle of radius 1 centered at ξ = −1.

Example 3. Find the stability domain for the third order Adams-Bashforth method, as given by (1.9).
As an approximation to (1.13), the scheme becomes y(t+ k) = y(t) + λk

12 (23y(t)− 16y(t− k) + 5y(t− 2k)).

With ξ = λk, this linear recursion relation has as its characteristic equation r3 = (1 + 23ξ
12 )r2 − 4ξ

3 r + 5ξ
12 .

Next, we solve for ξ to obtain ξ = 12r2(r−1)
23r2−16r+5 . The edge of the stability domain is traced out in the complex

ξ-plane if we let r move around the edge of the unit circle. The result is seen as the p = 3 curve in Figure
1.2 a.

For convenient reference, Figures 1.2-1.5 display the stability domains for a number of well-known ODE
solvers. The two schemes in Figure 1.5 are both enhancements to the second order accurate leapfrog (LF)
scheme, which we in slightly abbreviated notation write as

yn+1 = yn−1 + 2k f(tn, yn) .

In both subplots, the LF stability domain is shown as the line segment joining +i and −i. The Hyman
method [19] includes a corrector step{

ŷn+1 = yn−1 + 2k f(tn, yn)
yn+1 = 4

5yn + 1
5yn−1 + 2

5k (f(tn+1, ŷn+1) + 2f(tn, yn))
,

resulting in third order of accuracy and a greatly enlarged stability domain (extending to − 3
2 and ± 3

2 i along
respective axes). LF with the Robert filter [26] proceeds by repeating the steps{

ŷn+1 = yn−1 + 2k f(tn, ŷn)
yn = ŷn + γ (ŷn+1 − 2ŷn + yn−1)

,

where γ is a positive parameter. This procedure requires only one function evaluation per time step. However,
the accuracy drops to first order (although the actual degradation is small if γ is small). The approach is
best suited for cases when eigenvalues stay close to the imaginary axis, rather than extending far into the
left halfplane.

Time staggered ODE solvers are discussed in [11, 12, 23, 30]; see also Section ??. For further discussions
of the major classes of ODE solvers, a book specializing on the topic should be consulted, e.g. [16, 17, 20].
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Figure 1.2: Stability domains for (a) Adams-Bashforth (AB) and (b) Adams-Moulton (AM) methods of
orders p = 1, 2, . . . , 6. The stability domains in all cases include the regions immediately to the left of the
origin, i.e. for AM1, it is the domain |1 − ξ| ≥ 1, and for AM2 the left halfplane. In all other cases, the
regions are bounded. A section along the imaginary axis near the origin is included for AB methods of orders
3, 4, 7, 8, 11, 12, . . . and for AM of orders 1, 2, 5, 6, 9, 10, . . .. Note that the scale differs by a factor of three
between the two figures.
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1.2.1.3 Stability analysis via ODE stability domains

We give here only one illustrative example.

Example 4. Determine the stability condition for (1.12) - same test case as with von Neumann stability
above - but using the ODE stability domain approach. The scheme (1.12) amounts to using Forward Euler
(also described as AB1) in time together with the spatial approximation, i.e. to solve the ODE system

d

dt



u1
u2
...
...
un

 =



−2 1 1
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 1 −2

 1/h2



u1
u2
...
...
un

 .

The matrix is symmetric, i.e. all its eigenvalues are real. By Gershgorin’s theorem, they are located on the
interval [−4, 0]. If the number of nodes n is even, inspection shows that [1, 1, . . . , 1]T is an eigenvector with
eigenvalue 0 and [1,−1, 1,−1, . . . ,−1]T with eigenvalue −4, so both interval bounds are sharp (n odd makes
an insignificant difference). When including the 1/h2 factor, the eigenvalues satisfy λ ∈ [−4, 0]/h2. This
range has to fall within the ODE solver’s stability domain, which in this case is ξ = λk ∈ [−2, 0] (according
to Example 2 above, or by inspecting the p = 1 curve in Figure 1.2 a). We thus need [−4, 0]/h2 ∈ [−2, 0]/k,
which simplifies to k/h2 ≤ 1

2 .

In the later contexts of RBF and RBF-FD methods, the generally irregular node layouts will make von
Neumann analysis impossible. In contrast, the ODE stability domain approach, together with a numerical
calculation of the differentiation matrix’ eigenvalues, will become the outstanding time stepping analysis
tool. Comparison of the eigenvalue distributions with the different ODE methods’ stability domains will
immediately give an excellent guide to both what time stepping method to choose, and then to the step sizes
that can be used.

1.2.1.4 The Courant-Friedrichs-Lewy (CFL) condition

The two previous stability tests (von Neumann analysis and matrix eigenvalues together with ODE stability
domains) have given necessary and (almost) sufficient stability conditions (some subtleties can arise if the
the DMs are non-normal, i.e. can’t be diagonalized by a unitary matrix). The CFL condition [4] is an
extraordinarily quick test that can show that some schemes are unconditionally unstable and others are
unstable for certain k-values, but it can never show a scheme to be stable. In heuristic terms, it states
that a FD scheme (discrete in both space and time) must be unstable if the stencil shape does not allow
information to flow with the speed required by the PDE. We apply next this test to two different schemes
for the 1-D one-way wave equation

∂u

∂t
+
∂u

∂x
= 0. (1.14)

Example 5. Use the CFL test for u(x,t+k)−u(x,t)
k + u(x,t)−u(x−h,t)

h = 0;
�

� �
. Figure 1.6 illustrates the

characteristic speed of the PDE (vPDE = 1; the velocity by which the solution travels in the (x, t)-plane),
and the maximal speed by which information can travel sideways in the same direction in the numerical
solution (vNUM = h/k). The condition vNUM ≥ vPDE tells us that, for k/h ≤ 1 (the stencil shape in the
illustration), the scheme might be stable. For k/h ≥ 1, vNUM is not fast enough, and the scheme must be
unstable.

Example 6. Use the CFL test for u(x,t+k)−u(x,t)
k + u(x+h,t)−u(x,t)

h = 0;
�
� �

. With this stencil shape,

vNUM = 0 for all combinations of k and h, and the scheme must therefore be unconditionally unstable.
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Figure 1.6: Schematic illustration of the CFL analysis for the stencil u(x,t+k)−u(x,t)
k + u(x+h,t)−u(x,t)

h = 0.

1.2.2 Elliptic type PDEs

We restrict our discussion here to the case of Poisson’s equation in 2-D

∂2u

∂x2
+
∂2u

∂y2
= f . (1.15)

Equations in this ‘elliptic’ category arise in numerous situations, such as for a streamfunction in fluid mechan-
ics or from field equations (describing gravitational and electrical fields, featuring potentials which satisfy
Laplace’s equation; equation (1.15) with RHS zero). Another source of equations of this type is equilibrium

processes. For example, (1.15) arises in the t→∞ limit of the heat equation ∂u
∂t = ∂2u

∂x2 + ∂2u
∂y2 − f.

Example 1. Create the following compact fourth order accurate approximation for the 2-D Poisson’s
equation (a 2-D counterpart to (1.8)): 1 4 1

4 −20 4
1 4 1

 u/(6h2) =

 1
1 8 1

1

 f /12 +O(h4). (1.16)

To derive this, we follow Collatz’ Mehrstellenverfahren [3, 10]. Because of
(
∂2

∂x2 + ∂2

∂y2

)
u = f, it also holds

that (
∂2

∂x2
+

∂2

∂y2

)2

︸ ︷︷ ︸u =

(
∂2

∂x2
+

∂2

∂y2

)
f

∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4

Approximation of these two relations to 4th and to 2nd order, respectively, give
− 1

12
4
3

− 1
12

4
3 −5 4

3 − 1
12

4
3

− 1
12

 u/h2 = [f ] +O(h4) , (1.17)

and 
1

2 −8 2
1 −8 20 −8 1

2 −8 2
1

 u/h4 =

 1
1 −4 1

1

 f /h2 +O(h2) , (1.18)
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respectively. Adding 1
12h

2 times (1.18) to (1.17) eliminates the ‘outliers’, and produces (1.16).

The formula (1.16) achieves its fourth order only thanks to the stencil for f in the right hand side (RHS).
As an approximation to the Laplace operator, the LHS of (1.16) is only accurate to second order, as seen by
Taylor expanding it around the center point: 1 4 1

4 −20 4
1 4 1

 u/(6h2) =

(
∂2

∂x2
+

∂2

∂y2

)
u

+
1

12
h2
(
∂2

∂x2
+

∂2

∂y2

)2

u

+
1

360
h4
(
∂2

∂x2
+

∂2

∂y2

)(
∂4

∂x4
+ 4

∂4

∂x2∂y2
+

∂4

∂y4

)
u

+
1

60480
h6
(
∂4

∂x4
+ 4

∂4

∂x2∂y2
+

∂4

∂y4

)(
3
∂4

∂x4
+ 16

∂4

∂x2∂y2
+ 3

∂4

∂y4

)
u

+O(h8)

For solutions to Laplace’s equation, the first three RHS terms vanish, and the approximation becomes sixth
order accurate. The two key advantages of (1.16) over (1.17) are

• The compact stencil is easier to use near boundaries, and

• The diagonal dominance of coefficient matrix improves numerical stability and speeds up iterative
solution methods.

Example 2. Analyze the accuracy of the hexagonal grid Laplace operator approximation (1.11).
Series expansion in the same style as in the previous example gives 1 1

1 −6 1
1 1

 / ( 3
2h

2) =

(
∂2

∂x2
+

∂2

∂y2

)
u

+
1

16
h2
(
∂2

∂x2
+

∂2

∂y2

)2

u

+
1

5760
h4
(

11
∂6

∂x6
+ 15

∂6

∂x4∂y2
+ 45

∂6

∂x2∂y4
+ 9

∂6

∂y6

)
u

+O(h6)

This expansion confirms that the approximation is only second order accurate for the Laplace operator, but
shows that it supports a compact fourth order approximation for (1.15). However, the accuracy improves
no further for solutions to Laplace’s equation, since the operator in the h4-term does not factorize. It thus
falls short in this regard of the Cartesian grid compact 9-point operator analyzed in Example 1.

Extending from 2-D to 3-D does not introduce any significant differences. For example, the 3-D counter-
part to (1.16) becomes

[0 1 0]
[1 2 1]

[0 1 0]
− − − − −

[1 2 1]
[2 −24 2]

[1 2 1]
− − − − −

[0 1 0]
[1 2 1]

[0 1 0]


u/(6h2) =



[0 0 0]
[0 1 0]

[0 0 0]
− − − − −

[0 1 0]
[1 6 1]

[0 1 0]
− − − − −

[0 0 0]
[0 1 0]

[0 0 0]


f /12 + O(h4), (1.19)
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again combining fourth order accuracy with diagonal dominance [33]. In this case, the 19 point stencil in
the LHS is an O(h2) accurate approximation to the Laplacian operator, which reaches O(h4) for solutions
to Laplace’s equation - as it does for the Poisson’s equation when used with the shown RHS stencil.

The last several examples have shown that FD approximations can provide higher orders of accuracy for
PDEs than the orders by which they approximate individual derivative operators. This issue will come up
again in the context of RBF-FD methods. Numerous generalizations of the compact formulas mentioned
above have been described in the literature, including to variable coefficients, inclusion of lower order terms,
extensions to the coupled streamfunction-vorticity system for the steady 2-D Navier-Stokes equations, etc.
[5, 14, 21].
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