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The collective dynamics of a network of excitable nodes changes dramatically when inhibitory nodes are
introduced. We consider inhibitory nodes which may be activated just like excitatory nodes but, upon
activating, decrease the probability of activation of network neighbors. We show that, although the direct
effect of inhibitory nodes is to decrease activity, the collective dynamics becomes self-sustaining. We
explain this counterintuitive result by defining and analyzing a “branching function” which may be thought
of as an activity-dependent branching ratio. The shape of the branching function implies that, for a range of
global coupling parameters, dynamics are self-sustaining. Within the self-sustaining region of parameter
space lies a critical line along which dynamics take the form of avalanches with universal scaling of
size and duration, embedded in a ceaseless time series of activity. Our analyses, confirmed by numerical
simulation, suggest that inhibition may play a counterintuitive role in excitable networks.
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Networks of excitable nodes have been successfully used
to model a variety of phenomena, including reaction-
diffusion systems [1], economic trade crises [2], epidemics
[3,4], and social trends [5]. They have also been used
widely in the physics literature to study and predict
neuroscientific phenomena [6–12], and have been used
directly in the neuroscience literature to study the collective
dynamics of tissue from the mammalian cortex in humans
[13], monkeys [14], and rats [14–17]. The effects of
inhibitory nodes, i.e., nodes that suppress activity, can
be important but are not well understood in many of these
systems. In this Letter, we extend such networks of purely
excitatory nodes to include inhibitory nodes whose effect,
on activation, is to decrease the probability that their
network neighbors will become excited. We focus on the
regimes near the critical point of a nonequilibrium phase
transition that has been of interest in research on optimized
dynamic range [6–11,15], information capacity [14], and
neuronal avalanches [13–18], and has also been explored in
epidemiology where it constitutes the epidemic threshold
[4]. At first pass, one would expect the inclusion of
inhibition in excitable networks to lead to lower overall
network activity, yet we find that the opposite is true: the
inclusion of inhibitory nodes in our model leads to
effectively ceaseless network activity for networks main-
tained at or near the critical state.
Our model consists of a sparse network of N excitable

nodes. At each discrete time step t, each node m may be in
one of two states smðtÞ ¼ 0 or smðtÞ ¼ 1, corresponding
to quiescent or active, respectively. When a node m is in
the active state smðtÞ ¼ 1, node n receives an input of

strength Anm. Each nodem is either excitatory or inhibitory,
respectively, corresponding to Anm ≥ 0 or Anm ≤ 0 for
all n. If there is no connection from node m to node n,
then Anm ¼ 0. Each node n sums its inputs at time t and
passes them through a transfer function σð·Þ so that its state
at time tþ 1 is

snðtþ 1Þ ¼ 1 with probability σ

�XN
m¼1

AnmsmðtÞ
�
; (1)

and 0, otherwise, where the transfer function is piecewise
linear; σðxÞ ¼ 0 for x ≤ 0, σðxÞ ¼ x for 0 < x < 1, and
σðxÞ ¼ 1 for x ≥ 1. In the presence of net excitatory input, a
node may become active, but in the absence of input, or in
the presence of net inhibitory input, a node never becomes
active.
We consider the dynamics described above on networks

drawn from the ensemble of directed random networks,
where the probability that each node m connects to each
other node n is p. In a network of N nodes, this results in a
mean in degree and out degree of hki ¼ Np. First, to create
the matrix A, each nonzero connection strength Amn is
independently drawn from a distribution of positive num-
bers. While our analytical results hold for any distribution
with mean γ, in our simulations, the distribution is uniform
on [0, 2γ]. Next, a fraction α of the nodes are designated as
inhibitory and each column of A that corresponds to the
outgoing connections of an inhibitory node is multiplied
by −1. Many previous studies have shown that dynamics
of excitable networks are well-characterized by the largest
eigenvalue λ of the network adjacency matrix A, with
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criticality occurring at λ ¼ 1 [7,8,12,19]. In order to achieve
a particular eigenvalue λ, we use γ ¼ λ=½hkið1 − 2αÞ�,
an accurate approximation for large networks [20].
We explored a range of 0 ≤ α ≤ 0.3, which includes the
fraction α ≈ 0.2, corresponding to the fraction of inhibitory
neurons in the mammalian cortex [21], and note that
as α approaches 0.5, γ diverges. If excitatory and inhibitory
weights are drawn from different distributions, larger
fractions α are possible, which we discuss in context
below Eq. (4).
Our Letter focuses on the aggregate activity of the

network, defined as SðtÞ ¼ N−1P
nsnðtÞ, the fraction of

nodes that are excited at time t. According to Eq. (1), if the
entire network is quiescent, S ¼ 0, it will remain quiescent
indefinitely. In the excitatory-only case, the stability of
this fixed point has been thoroughly investigated, finding
stability for λ ≤ 1 and instability for λ > 1. Many studies
have examined this phase transition in activity S, finding
that many of the interesting properties occur at the critical
point λ ¼ 1 such as peak dynamic range [6–8,15,19] and
entropy [14], and critical avalanches [12,14,15], and so, our
investigation is restricted to values of λ near 1.
The main result, in this Letter, is that when inhibitory

nodes are included, the state S ¼ 0 is unstable. The
representative time series of SðtÞ in Fig. 1(a) show that
when α > 0, activity no longer ceases. Subcritical network
activity fluctuates within a tight band near S ¼ 0, super-
critical network activity fluctuates within a tight band
near S ¼ 1, and critical network activity fluctuates widely,
yet is repelled away from S ¼ 0. Empirical distributions
of system states are shown for each of these cases in
Fig. 1(b), highlighting the broad distribution for λ ¼ 1,
and narrow distributions, otherwise. Importantly, Fig. 1(b)
also demonstrates that for α > 0, network activity never
reaches S ¼ 0, while for α ¼ 0 and λ ≤ 1, activity always
eventually dies. A raster plot of self-sustained activity with
λ ¼ 1 is provided in Fig. S2 [22].
In order to analyze and understand this behavior, we

introduce the branching function ΛðSÞ, which we define as
the expected value of Sðtþ 1Þ=SðtÞ conditioned on the
level of activity SðtÞ at time t,

ΛðSÞ ¼ S−1E½Sðtþ 1ÞjSðtÞ ¼ S�: (2)

We note that Λ is similar to the branching ratio in branching
processes except that Λ varies with S. For values of S
such that ΛðSÞ > 1, activity will increase on average,
and for values of S such that ΛðSÞ < 1, activity will
decrease on average. The expectation in Eq. (2) is taken
over many realizations of the stochastic dynamics. Noting
that there is a set of many different possible configur-
ations ~s ¼ fsngNn¼1 of active nodes that result in the
same active fraction S, we define this set as SðSÞ. Thus,
ΛðSÞ¼ S−1ESðSÞfE½Sðtþ1Þj~sðtÞ∈SðSÞ�g, where the outer
expectation averages over configurations in SðSÞ and the

inner expectation averages over realizations of the dynam-
ics for a given configuration. Using Eq. (1), we write

ΛðSÞ¼S−1ESðSÞ

��
σ

�X
m

AnmsmðtÞ
�
j~sðtÞ∈SðSÞ

��
; (3)

where h·i denotes an average over all nodes n. A is a
large network with uniformly random structure, so we
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FIG. 1 (color online). (a) Time series of SðtÞ show typical
behavior of this system: α > 0 causes the S ¼ 0 state to become
repelling, so that dynamics are self-sustaining. (b) Empirical
distributions of network activity show that states of critical
systems are much more uniformly distributed while sub- and
supercritical states fluctuate within tight bands. (c) Predictions
of branching function Λ [Eq. (4)] agree well with empirical
measurements of Sðtþ 1Þ=SðtÞ for various λ and α. Three
regimes corresponding to Λ > 1, Λ ¼ 1, and Λ < 1 are visible,
explaining dynamics from panels (a) and (b). The Λ > 1 regime
causes self-sustained behavior. Sub- and supercritical networks
achieve Λ ¼ 1 at a single S (arrows), around which dynamics
fluctuates tightly; critical networks achieve Λ ≈ 1 over a wide
range in S, allowing broad fluctuations. Λ < 1 for large values
of S preventing activity from completely saturating. N ¼ 104,
hki ¼ 200 for all panels.
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approximate the expectation over SðSÞ by assuming
each snðtÞ is 1 with probability S and 0 otherwise
independent of the other nodes. Since nodes differ in
the number and type of inputs, this assumption is valid
only for large, homogeneous networks. Thus, each node
will have, on average, Shkið1 − αÞ active excitatory inputs
and Shkiα active inhibitory inputs. To account for the
variability in the number of such inputs for any particular
node (due to both the degree distribution of a random
network and the stochasticity of the process), letting
PðβÞ be a Poisson random variable with mean β, we
model the number of active excitatory inputs as ne ¼
P½Shkið1 − αÞ� and the number of active inhibitory inputs
as ni ¼ PðShkiαÞ. We describe the total input to the
transfer function using ne and ni draws from the link
weight distribution. Replacing the argument of σ in
Eq. (3), and taking the expectation over the distributions
of ne and ni, as well as over the link weight distributions,
we approximate

ΛðSÞ ≈ S−1E
�
σ

�Xne
j¼1

wj −
Xni
k¼1

wk

��
; (4)

where wj and wk are independent draws from the link
weight distribution. Equation (4) may be used for any
function 0 ≤ σ ≤ 1, and wj and wk may represent draws
from different excitatory and inhibitory link weight
distributions.
Ceaseless dynamics are now explained by the shape of

the branching function, shown in Fig. 1(c). Specifically, for
small S, ΛðSÞ > 1, so low activity levels tend to grow, thus,
preventing the dynamics from ceasing. The role of inhib-
ition in this growth of low activity may be succinctly
quantified as

Λ0 ¼ lim
S→0þ

ΛðSÞ ≈ λ
1 − α

1 − 2α
; (5)

shown in Fig. 2(a) and derived in [22]. This estimate
coincides with the dominant eigenvalue of the network
adjacency matrix without inhibitory links, λþ, derived in
[22]. Pei et al. proposed a different model in which a single
inhibitory input is sufficient to suppress all other excitation
and found that λþ controlled dynamics for all activity levels
in their model [19]. In contrast, we find that for moderate
values of S, ΛðSÞ ≈ λ, and for large values of S, ΛðSÞ
decreases further. For noncritical networks, ΛðSÞ ¼ 1 at a
single value of S, provided α > ð1 − λÞ=ð2 − λÞ. Since
ΛðSÞ is nonincreasing, SðtÞ will stochastically fluctuate
around that single point of intersection, Fig. 1(c) (arrows).
On the other hand, for networks in which λ ¼ 1, ΛðSÞ ≈ 1
over a wide domain in S, placing the network in a critical
state where activity tends to, on average, replicate itself.
For large values of S, ΛðSÞ < 1, imposed by system size.
We find that, when there are no inhibitory nodes (α ¼ 0),

network activity resulting from an initial stimulus ceases
after a typically short time, in agreement with previous
results [6–8]. However, as α is increased, activity lifetime
grows rapidly. To understand the dependence of activity
lifetime on model parameters, we simulated the critical case
λ ¼ 1 with various N, hki, and α, finding that the expected
lifetime of activity after an initial excitation of 100 nodes
grows approximately exponentially with increasing α,
with growth rate proportional to N=hki [Fig. 2(b)]. Thus,
large, sparse networks are likely to generate effectively
ceaseless activity without any external source of excitation.
The expected lifetime of activity τ, derived analytically
(see [22]) by treating SðtÞ as undergoing a random walk
with drift ½ΛðSÞ − 1�S, is approximately given by

τ ∼ C1 exp

�
C2

N
hki

α

ð1 − 2αÞð1 − αÞ
�
; (6)

where C1 and C2 are two constants. Figure 2(c) shows
collapse of numerically estimated τ for different values of
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FIG. 2 (color online). (a) Empirical measurements of Λ0 (symbols) agree well with predictions, Eq. (5), showing that, as α increases,
the S ¼ 0 state becomes more repulsive. (b) Lifetime of network activity increases with inhibitory fraction α for various N and hki.
Simulations began with 100 active nodes, with lifetime calculated from the fraction of simulations that ceased prior to T ¼ 104 time
steps. (c) Lifetime scales correctly with q, as shown in Eq. (6), indicated by collapse of curves.

PRL 112, 138103 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014

138103-3



N=hki when plotted against q ¼ Nα=½hkið1 − 2αÞð1 − αÞ�,
in agreement with Eq. (6).
We now turn our attention to avalanches. For systems in

which activity eventually ceases, an avalanche can be
defined as the cascade of activity resulting from an initial
stimulus, and thus, in excitatory-only models, avalanches
occur with well-defined beginnings and ends. Because our
model generates a single ceaseless cascade, we define an
avalanche as an excursion of SðtÞ above a threshold level S�
[23], fragmenting a ceaseless time series SðtÞ into many
excursions above S�, Fig. 3(a). Avalanche duration is defined
as the number of time steps SðtÞ remains above S�, and
avalanche size is defined as a ¼ P

SðtÞ, summing over
the duration of the avalanche. This definition corresponds
to an intuitive notion of a lower threshold below which
instruments fail to accurately resolve a signal. For λ ¼ 1 and
all α tested in the model, avalanche sizes are power-law

distributed [Fig. 3(b)] with exponents that are consistent
with critical branching processes and models of critical
avalanches in networks [12], with size distribution PðaÞ ∼
a−β with β ≈ 1.5. This is equivalent to a complementary
cumulative distribution function Pðavalanche size > aÞ ∼
a−1=2 as displayed in Fig. 3(b). Exponents from numerical
experiments [24] are shown in Table S1 of the Supplemental
Material [22].
Critical branching processes [25] and critical avalanches

in excitatory-only networks [12] should have durations
distributed according to a power law with exponent −2.
However, as can be seen in Fig. 3(c), avalanche durations,
while broadly distributed, are not power laws, which we
confirmed statistically [24]. Though at first glance this
appears to disqualify dynamics as critical, we find that
time series from a Galton-Watson (GW) critical branching
process [25] that are fragmented into avalanches by thresh-
olding show distributions like those shown in Fig. 3(c), and
not a power law with exponent −2 [22]. Our predictions in
both Figs. 3(b) and 3(c), therefore, agree well with the
criticality hypothesis (dashed lines). Our choice of S� for
cascade detection was the lowest value of S for which
ΛðSÞ < 1.01, thus, accounting for differences in the
dynamics of the model for different α and acknowledging
that for low activity, dynamics are not expected to be
critical since ΛðSÞ is far from unity. These results are robust
to moderate increases in S�. Based on these observations,
we note that to classify or disqualify dynamics as “critical”
or “not critical” based on avalanche duration statistics
may depend on precisely how avalanches are defined and
measured.
The inclusion of inhibition in this simple model produces

dynamics that may naturally vary between regimes. The
low activity regime, where ΛðSÞ > 1, prevents activity
from ceasing entirely while the high activity regime, where
ΛðSÞ < 1, prevents activity from completely saturating.
This may be understood in the following way. For an
inhibitory node to affect network dynamics, it must inhibit
a node that has also received an excitatory input. When
network activity is very low, the probability of receiving a
single input is small, and the probability of receiving both
an excitatory and an inhibitory input is negligible. Thus, as
network activity approaches zero, the effect of inhibition
wanes and dynamics are governed by λþ. On the other
hand, when network activity is very high, some nodes
receive input in excess of the minimum necessary input
to fire with probability one, and so input is “wasted”
by exciting nodes that would become excited anyway,
shifting the excitation-inhibition balance toward inhibition,
ΛðSÞ < 1. The moderate activity regime, where ΛðSÞ≈1,
features activity that is, on average, self-replicating. For
super- and subcritical networks, the moderate activity
regime is a single point, but for critical networks where
λ ¼ 1, this regime is stretched, allowing for long fluctua-
tions that emerge as critical avalanches. Thus, for large,
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critical networks, we find avalanches embedded in self-
sustaining activity.
To conclude, in this Letter, we have described and

analyzed a system in which the addition of inhibitory
nodes leads to ceaseless activity. Our findings may be
particularly useful in neuroscience, where self-sustaining
critical dynamics has been observed [18]. In experiments,
networks of neurons exhibit ceaseless dynamics and
optimized function (dynamic range and information capac-
ity) under conditions where power-law avalanches occur
[14,15,18], but it is not currently possible to directly test the
relationship between cortical inhibition and sustained
activity in vivo. One alternative may be to compare
empirically measured branching functions from in vivo
recordings with their in vitro counterparts, where more
manipulation of cell populations is possible. This could
also be done in model networks of leaky integrate-and-fire
neurons, but while criticality [26] and self-sustained activ-
ity without avalanches [27] have been found separately,
they have not yet been found together. The relation of
our mechanism to more traditional “chaotic balanced”
networks studied in computational neuroscience [28] and
the ability of balanced networks to decorrelate the output
of pairs of neurons under external stimulus [29] remain
open. Outside neuroscience, our results may find applica-
tion in other networks operating at criticality, such as gene
interaction networks [30], the internet [31], and epidemics
in social networks [5,32].
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