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SUMMARY

We note in this study that the Navier-Stokes equations, when expressed in streamfunction-vorticity fonn, can be
approximated to fourth--order accuracy with stencils extending only over a 3 x 3 square of points. The key
advantage of the new compact fourth-order scheme is that it allows direct iteration for low~to-mediwn Reynolds
numbers. Numerical solutions are obtained for the model problem of the driven cavity and compared with
solutions available in the literature. For Re $1500 point-SOR iteration is used and the convergence is fast.
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1. INTRODUCTION

The present paper is concerned with solving the steady two-dimensional Navier-Stokes (N-S)
eqWltions by finite differences. It is known that finite difference (PD) methods of obtaining
approximate numerica'solutions of the steady incompressible N-S eqWltionscan vary considerably in
terms of accuracy and 'efficiency. In the area of FD methods it has been discovered that although
central difference approximations are locally second-order-accurate, they often suffer from
computational instability and the resuJting solutions exhibit non-physical oscj1Jations. The upwind
difference approximations are computationally stable, although only first-order-accurate, and the
resulting solutions exhibit the effects of artificial viscosity. The second-order upwind methods are no
better than the first-order upwind difference ones for large values of Re. The higher-order FD methods
of conventional type do not allow direct iterative techniques. An exception has been found in the high-
order FD schemes of compact type, which are computationally efficient and stable and yield highly
accurate numerical solutions. 1-3
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to the equation

(2)

is fourth-order accurate when applied to any solutions to equation (2). Gupta ef at." Dennis and
Hudson2 and Gupta3 note that this technique can be generalized to also provide a fourth-order-accurate
nine-point scheme for solutions to the convection-diffusion equation

&, &, ( a, a,)ax2 +
BY'

- Re p(x, y) ax + q(x, y)
By = f(x, y).

With the choices p(x, y) ~ ifty, q(x, y) ~ -ift, and f(x, y) = 0 the pair of equations (2), (3) forms the
steady 2D N-S equations. However, in this case a problem arises in that the approximations needed to
obtain the velocities p(x, y) and q(x, y) to fourth-order accuracy will extend outside the (3 x 3)-point
domain,2,3 In the present work we derive a compact fourth-order FD scheme for the time-independent

N-S equations with the novelty of 'genuine compactness', i.e. the compact scheme is strictly within the
nine-point stencil. It is shown that the new scheme yields highly accurate numerical solutions while
still allowing SOR-type iterations for low-to-medium Reynolds numbers.

The organization of the paper is as follows. In the next section we introduce the compact fourth-
order FD scheme for the N-S equations. In Section 3 we test the new fourth-order scheme for the N-S
equations which possess an exact solution. The model problem of the lid-driven cavity is described in
Section 4 with detailed comparisons of our solutions with the existing solutions in the literature. In
Section 5 we discuss possible extensions of the present method.

(3)

2. NUMERICAL METHODS

The N-S equations representing the two-dimensional steady flow of an incompressible viscous fluid
are given in streamfunction-vorticityfonn as

(4)

(5)

Here ift is the streamfunction, ,is the vorticity and Re is the non-dimensional Reynolds number.
Assuming a uniform grid in both x- and y-directions, we number the grid points (x, y), (x + h, y),
(x, y+h), (x- h, y), (x, y- h), (x+h,y+h), (x- h, y+ h), (x - h, y - h) and (x+h, y- h) as 0, I,
2, 3, 4, 5, 6, 7 and 8 respectively (see Figure I), where h is the grid size. In writing the FD
approximations, a single subscript j denotes the corresponding function value at the grid point
numberedj.

By (I), a compact fourth-order scheme for (4) follows immediately:

h2
4(ift, + ift2+ ift, + ift.) + ifts+ ift6+ ift7+ ift, - 20ifto= -

2 (" + '2 + '3 + ,. + 8'0)' (6)
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Next, letting g(x, y) ~
"'y'x - "1S'y, we can rewrite (5) as 'xx + 'yy = Re g(x, y). Now, using (16) in

the Appendix yields

8('1 +" + '3 + ,.) + 2(', + '6 + '7 + '8) - 40'0 = 12h' Re g + h' Re(gxx + gyy) + O(h6).

Note that g consists of first partial derivatives of'" and ,.Then gxx + gyy involves the third derivatives

of'" and , and this in turn will lead to the use of extra points outside the (3 x 3)-point domain and ruin
the compactoess. To avoid this, we replace the directional derivatives "'xxx, "'_ 'xxx and 'yyy be
appropriate mixed derivatives which can be approximated up to O(h') using the nine points. This
strategy successfully gives a resulting scheme of fourth order at the cost of tedious but trivial
manipulations. We defer the derivation to the Appendix and simply give the result here:

8('1 +" + '3 + ,.) + 2(', + '6 + '7 + '8) - 40'0

=Re("'2"13 - "'13'24 + "'I'" + "'2"6 + "'3'67+ ""'78+ ""'12+ "'6'23+ "'7'34+ "'8,.d
Re [ I+ 4 "'13'13"'204

+ "'24'24"'103+ ''''13'''''(''6 + '78)

- ~("'13'24+ "'24'13)(""6 + "'78) - "';3'204 - '''~''103]'
(7)

where fi}:= fi - fj and fik} := fi - 21k + fj. The fourth-order compact scheme for the N-S equations
(4) and (5) is given by (6) and (7).

The new fourth-order compact scheme (6) and (7) is to be solved by pointwise iteration methods as
described in Reference 5 or by Newton's method with direct solvers at each stage as described in
Reference 6.

3. NAVIER-STOKES EQUATIONS WITH EXACT SOLUTION

In this section we obtain numerical solutions of (4) and (5) using the new fourth-order compact scheme
(6), (7). The test problem used in this section is chosen such that the analytical solution is available, so

a rigorous comparison can be made. Following Reference 7, we give the test problem which has exact
solutions for the N-S equations (4) and (5) in Q:

'"
=Y;eX - e'+Y, ,= 2ex+y, Q = (0, I) x (0, I)

We notice that the above solution is smooth in Q := [0, I] x [0, I].
We consider the test problem with Dirichlet boundary conditions, i.e. boundary values of'" and ,are

given. Various Reynolds numbers ranging ftom Re ~ 5 to 1000 were tested, but since the results appear
to be Re-independent, only those for Re = 1000 are shown. For the sake of comparison the results
using a second-order central difference scheme are also presented. The RMS errors in Q for the
strearnfunction and vorticity are given in Table I. It is observed that the results for the h2 scheme, the
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Table I. RMS errors in.Q for the streamfunction and vorticity at Re == 1000

ojI-error, '-error Ij!-error, '-error ojI-error, '-error "'-error, '-error

h2 scheme
h4 scheme
Grid

1-41(-4)*,2-71(-4)
4'72(-8),9-45(-8)
Ilxll

3'35(-5),6'63(-5)
2-80(-9),5'59(-9)
21 x 21

8'17(-6), 1-63(-5)
1'70(-10),3040(-10)
41 x41

2'02(-6),4'01(-6)
1'05(-11),2'10(-11)
81 x 81

* 1'41(-4)=1.41 x 10-4. etc.

central difference scheme, are in good agreement with those obtained by Bramley and Sloan.8 It is also
seen that the convergence orders for the h2 scheme and the h4 scheme, (6) and (7), are two and four
respectively. This confirms that the compact scheme (6), (7) is of fourth-order accuracy when the
solutions of (4) and (5) are smooth.

This test problem is solved by Newton's method. The Newton iteration process is similar to that
described in Reference 6. In all the calculations, less than four iterations are required in order to obtain
convergent results.

4. DRIVEN CAVITY PROBLEM

As a model problem we consider the steady flow of an incompressible viscous fluid in a square cavity
(0 S x S I, 0 S y S I). The flow is induced by the sliding motion of the top wall (y = I) ftom left to

right; see Figure 2. The boundary con<litions are those of no slip: on the stationary walls

u = aljJ / fJy = 0 and v = -aIjJ/ ax = 0; on the slidingwall u ~ I and v = O. This problem has served

over and over again as a model problem for testing and evaluating numerical techniques, in spite of the
singularities at two of its comers. Highly accurate benchmark solutions of this problem are available in
the literature (see e.g. References 9 and 10).

4.1. Numerical boundary conditions

The implementation of numerical boundary conditions has received considerable attention in the
past. Basically there is at least two topics worth discussing in detail: the vorticity condition on the
boundary and the influence of boundary accuracy (less than the interior) versus global accuracy. For
the first topic, in spite of the fact that the numerical boundary condition involving the vorticity on the
boundary has been proved practically successful, it is argued that specifYing the vorticity on the
boundary does not coincide with the reality either physically or mathematically (see e.g. Reference II).

1t ==1 v=O
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From this point of view it is proposed to use two boundary conditions on 1/1and none on C (see e.g.

References II and 12). As to accuracy, it is not quite clear whether less accuracy on the boundary
would essentially depreciate the global accuracy, since a rigorous error analysis is by no means easy for
the resulting non-linear scheme. Nevertheless, a recent work by Hou and Wetton

13proved that global

second-order accuracy can be obtained via a second-order-accurate difference scheme in the interior
and a first-order-accurate method on the boundary.

In this work our numerical boundary condition is based on the theory in Reference II. It uses two
conditions on 1/1:on the stationary walls 1/10= 0 and 1/11= 1/12/2-1/1,/9; on the moving wall y = I,

1/10= 0 and 1/11= 1/1212-1/1,/9 + h/3. Here the subscript 0 denotes a value at a boundary grid point and
the subscriptj (j = 1,2,3) denotes values at thejth internal grid point along the inward normal at o.

The boundary conditions for 1/1are based on the fuct that

I 3 3 II
3hl/l, -2hI/l2+"I/1,- 6hl/lo

is a tlrird-order-accurate approximation of &I/JIon. The vorticity CI is determined by the standard five-
point FD method for (4). The compact scheme (6), (7) is to be implemented in the region
[2h, I - 2h] x [2h, 1 - 2h]. It can be verified that this treatment of the numerical boundary condition
has second-order accuracy for 'I in the sense of truncation eITOrs. Moreover, it can be seen that the

values of Coare not used in the calculations. For detail of this method see Reference 12.

4.2. Comparisons with existing solutions

We now present numerical solutions for the driven cavity problem for Re :<;7500. To illustrate the
advantages of the compact fourth-order scheme, we shall concentrate on the following two points.

1. Efficiency. We show that the non-linear systems can be solved by using the point-SOR iteration
method.

2. Accurocy. We use mesh sizes which are greater than those used in References 9 and 10 to obtain
qualitatively and quantitatively agreeable results for reasonably large values of the Reynolds
number.

The unit square is covered by a grid of uniform mesh size h (h = IIN). Numerical solutions are

obtained using an inner-<>uter iteration procedure as described in Reference 5. At each outer iteration
the non-linear systems ftom the discrete strearnfunction and vorticity equations are solved iteratively.
We solve these non-linear systems using point-SOR iteration with the relaxation parameters a. ::0:1 for
the streamfunction and p ::0: 1 for the vorticity. These parameters are usually taken as a. = I. 5 and
p = l' 2 for the coarse mesh (41 x 41 grid). For the fine mesh (129 x 129 grid) we use
(a., P) = (1'2,1'1) for Re:<;3200 and (a.,P) = (1'1,1'0) for Re>3200. We also use two inner
iterations in all the calculations. The smoothing (or damping) parameter /j is used to obtain the
numerical boundary values.

Let
(8)

denote the iteration error at the mth itertaion, where g~m)} and {I/J~m)}refer to the values of {Cij} and
{1/1ij} afier the mth iteration. To show the rate of convergence, we plot the convergence history for

Re = 100,400, 1000 and 2000 using a 41 x 41 grid in Figure 3. The iterations were started with zero
initial data and were terminated when E(m) < 10-4 The relaxation parameters used are
(a., p, /j)=(1'5, 1'2,0'9) for Re:<; 1000 and (a., p, /j) = (1'2,1'1,0'5) for Re = 2000. Moreover, in
Table 11we give the number of outer iterations needed to converge to the required tolerance. Table 11



Re Present Gupta

100 352 353
400 433 509

1000 668 1040
2000 1779 4266
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Figure 3. Convergence history for Re= 100,400, 1000 and 2000

also includes the corresponding numbers provided in Reference 3. II is seen that the present procedure
is faster than that used in Reference 3.

Forthe finegrid(129 x 129)the solutionprocedureis as follows.Firstwe selRe ~ 200anduse zero
initial values. When E(m) < y = 0'05, we increase the value of the Reynolds number by letting
Re ~ Re + dR with dR ~ 200. If the iteration error E(m) for this Re is less than y, we increase the value

of Re by adding another dR. Repeat this procedure until Re = 1000. Then more iterations are used
until E(m) < 5 x 10-4; see Figure 4(a). Thus we obtain the convergenl solutions for Re ~ 1000. Nexl

we set Re = 1200 and use the solutions for Re ~ 1000 as starting values. If E(m) < y = 0,05, then the

value of Re is updated by adding a dR which again equals 200. Repeat this procedure unlil Re ~ 3200.

Then more iterations are used until E(m) < 5 x 10-4; see Figure 4(a). Similarly we use the convergent
solutions for Re ~ 3200 and 5000 as initial values for Re ~ 5000 and 7500 respectively, but in these

two cases we use !J.R= 50 and y ~ 0'01; see Figure 4(b). The relaxation parameters are
(~, p, J)=(1'2, l-l, 0'9) for Re:;; 3200 and (~. p, J)=(I'I, 1'0,0'5) for Re>3200. II can be seen
ftom Figure 4 thai aboul 4000 iterations are sufficient 10 obtain convergent solutions for all the
Reynolds numbers considered.

Table II. Number of outer iterations needed to converge to 10 -4. The
present calculation uses two inner iterations. Ten inner iterations are used

by Gupta'
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Figure 4(a). Convergence history for Re = 1000 and 3200
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Figure 4(b). Convergence history for Re = 5000 and 7500
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Table III. Comparisonof the results on featuresof the primaryvortex for high Reynolds numbers

Re Source 1ft-value ,- value Location

1000 Present (129 x 129) 0.118448 2.05876 0'5313,0'5625
Nishida and Satofuka14 0.119004 2.06855 0'5313,0'5625
(129 x 129J

0.117929 2.04968 0'5313,0'5625Ghia et al. (I29 x 129)
3200 Present (129 x 129) 0.120529 1.94286 0'5156,0,5391

Nishida and Satofukal4 0.121154 1.95078 0'5156,0,5391
(129 x 129J

0.120377 1.98860 0'5165,0'5469Ghia et al. (129 x 129)
5000 Present (129 x 129) 0.120359 1.92430 0'5156,0'5391

Ghia et al.9 (257 x 257) 0.118966 1.86016 0,5117, 0.5352
7500 Present (129 x 129) 0.119379 1.91950 0,5156,0,5391

Ghia et al.9 (257 x 257) 0.119976 1-87987 0'5117,0,5322
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Figures 5 and 6 show the streamfunction and vorticity contours for Re ~ 1,100,400 and 1000 using

a 41 x 41 grid. They can be compared with the results of Gupta, 3 Ghia et al.9 and Schreiber and
KellerlO and are graphically indistinguishable. Figures 7 and 8 show the streamfunction and vorticity

contoursfor Re ~ 1000,3200, 5000 and 7500using a 129x 129 grid. Againthey comparewellwith
the well-known results obtained by Ghia et al.9 In Table III we summarize the data concerning the
locationsand strengthsof the prinJaryvortexforRe ~ 1000,3200,5000 and 7500, which are found to
be in very good agreement with the higher-order results in Reference 14 and the finer mesh results in
Reference 9.

5. EXTENSIONS

5.1. Extension to rectangular grids

The schemes introduced in Section 2 can be readily extended to rectangular grids, i.e. the mesh sizes
ilx in the x-direction and Ay in the y-direction are different. The derivation is in the sanJe spirit as the
Appendix. We use Taylor expansion in the x- and y-directions separately when discretizing the
differential equations. In invoking equations (4) and (5) to elin3inate third-order directional derivatives
(as in the Appendix, equations (17) and (19)), we use

(9)

(10)

Finally we can obtain the fourth-order compact scheme with anisotropic mesh size for (4) and (5):

(lOA - 2y)(\111+ \113)+ (lOy - U)(\I1z + \11.)+ (A + y)(\I1, + \116+ \117+ \I1s- 20\110)

= -ilxAY((1 + (z + (3 + (. + 8(0),
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Figure 5. Streamlines for Re= I, 100,400 and 1000 using a 41 x 41 uniform grid

Figure 6. Vorticity contours for Re= I, 100,400 and 1000 using a 41 x 41 uniform grid
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(lOA - 2ym, + (,) + (lOy - Um2 + (.) + (A+ ym, + (. + (7 + (8 - 20(0)
Re ( 2 2) Re ( .2 .,=2 4-A -y ("'24("-"'''(24)+4 dy -=-)("(24

Re
+ 4 ["'I

((.7 + 3(85)+ "'2((78+ 3(,.) + "',((85 + 3(.7) + ",.((,. + 3(78)

+ ",,((,. + 3(12)+ "'.((.1 + 3(23)+ "'7((12+ 3(,.) + "'8((23+ 3(.d]
~& f&

+ ~ [("(""7+ "'.8)- "'''((57 + (.8)] + ~ ["'2.(('. - (78)- (2.("". - "'78)]

Re' (+""4 A"'''(('''''204 - "',,(204) + Y"'2.((2."'IO' = "'24(103)

+ A; Y
"''''''2.(('. + (78)- ~(Y"'2'(" + A"',,(2.)("',. + "'78»),

where A = dylfla, y = fI.xIdy and again fij := fi - jj, fik} := fi - 2ft + jj. It is easy to veri/)' that
when fIa = dy, the above scheme is in coincidence with the one given in Section 2. In order for the
above scheme to allow SOR-type iteration, the mesh ratio y is required to satis/)' y E (1/v'5, v'5).

5.2. Extension to more general domains

If a domain can be transfonned into a rectangular one by conformal mappings, then the present
compact fourth-order methods can be extended to solve the transfonned equations in the rectangular
domain. By using a confonnal mapping x = x( a, ~) and y = y( a, ~), the resulting N-S equations can

be written as

"'.. + "'., = -p(a, ~)(, (11)

(12)

where p(a, ~) is a known function. A fourth-order compact scheme for (11) and (12) can be
consnucted in similar way to the Appendix. The only extra steps are to add the term (<P.(. - p.(.) to
the right-hand sides of (17) and (19). Since P. and p. are known functions, the extra tenn can be
readily approximated up to O(h2) within the nine-point stencil.

6. REMARKS AND CONCLUSIONS

6.1. Newton's method

Over recent years there has been great interest in using Newton's method with direct solvers at each
stage to solve the discretized N-S equations. This technique is useful in obtaining accurate steady
solutions not only in high-Reynolds-number cases but also in time-unstable situations such as steady
incompressible flow past 'simple' blunt bodies (e.g. a cylinder, a sphere, a flat plate perpendicular to a
mestrearn, arrays of such bodies, etc). In spite of the fact that experiments become time-dependent at
relatively low Reynolds numbers (owing to instabilities), there are many reasons for studying steady
(unstable) flow fields at high Reynolds numbers...IS.I. To obtain the steady (unstable) flow fields at
high Reynolds numbers, it is impossible to employ any standard pointwise iterative methods, which
tend to pick up instabilities reminiscent of temporal ones. The quadratic convergence of Newton's
method precludes this from happening. The cost of solving banded systems with partially pivoted
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Gaussian elimination is proportional to the number of iterations and to the square of the bandwidth. If
we consider Newton's method implemented on an N x N grid, then with the usual row or column
ordering the bandwidth for the previous compact fourth-order schemes'.' is 6N. Therefore the cost of
solving banded systems is O(nN'). On the other hand, the bandwidth for the present compact scheme
is 4N and hence the cost of solving banded systems is 0(3ZN').

6.2. Non-compact fourth-order schemes

Hou and Wetton'7 employed fourth-order streamfunction methods for the time-dependent,
incompressible N-S equations. Wide schemes which are built using standard fourth-order difference
operators are employed instead of compact ones and the boundary terms are handled by extrapolating
the streamfunction values. Evidence is given that this approach is preferable to using compact
differencing for high-Reynolds-number flows. This property of compact schemes has been well
documented in Reference 18. Indeed, we found that for the driven cavity problem the convergence
becomes slow and SOR pointwise iteration does not work when Re 2: 9000. One of the reasons for this
is that the truncation errors for all the compact schemes are of order O(h4Re'), while the truncation
errors for conventional fourth-order schemes are of order O(h4Re).

6.3. Conclusions

In this work we have developed a new compact fourth-order scheme for the time-independent
Navier-Stokes equations with the novelty of 'genuine compactness'. In deriving compact fourth-order
schemes, the main difference between our method and previous ones is the following. To obtain
a compact fourth-order scheme for (5), previous researchers employ Taylor expansion for (5) but do
not use (4) which gives the relation between J/1and (. However, our procedure also employs equation
(4), so that the compact scheme for (5) is strictly within the nine-point stencil (see equations (17) and
(19) in the Appendix). The key point with the present scheme is that it allows direct iteration for low-

to-medium Re.
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APPENDIX: FOURTH-ORDER SCHEME FOR VORTICITY EQUATION

For completeness we Iirst reiterate the derivation of the fourth-order compact scheme for

Un +
u'" = f(x, y).

Following the notation in Reference 19 and using Taylor expansion, we have (at point 0)

, rPu h' fJ'u ( 4) ( h' ,)rPu ( 4).\u =
ax'

+ 12 ax' + 0 h = I +
IZbx

ax'
+ 0 h ,

where b; := (u, - ZUo+ u,)/h (see Figure I) and we have used the fact

rPu , ( ' )ax' = bxU+ 0 h .

(13)

(14)
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Therefore, symbolically,

Using the above fonnula and its counterpart in the y-direction, we can approximate (13) by

which gives

(I + ~~b;)b;U + (1 + ~~b;)b;U = (1+ ~>;) (1 + ~~b;)1 + a(h4)

= (I + ~~
(b;H;))I + a(h4).

(15)

Simplifying this expression, we can readily obtain (6). For (7) we first denote

g(x, y) = "'y(x - "'x(r

Applying (14) and (15) to (xx + (yy = Re g(x, y) yields

8((, + (, + (3 + (4) + 2((, + (6 + (, + (,) - 40(0 = 12h' Re g + h4 Re (gxx+ gyy) + a(h6)

=: h +h+a(h6). (16)

Straightforward calculations give us

gx = "'yx(x + "'y(xx - "'xx(y - "'iyxo
gy = "'yy(x + "'y(xy - "'xy(y - "'x(,,"

gxx = "'yxx(x + 2"'yx(xx + "'"xxx - "'xxx(y - 2"'xx(yx - "'x(yxx,

gyy = "'m(x + 2"'yy(xy + "'y(xyy - "'xyy(y - 2"'xy(yy - "'x(m.

Using (4) and (xx + (yy =Re g(x, y), we have

gxx + gyy = (A "'xx + "'yy)y + "'A(xx + (yyt -(y("'xx + "'yy)x

- "'A(xx + (yy)y +2"'xy((xx - (yy) + 2(yx("'yy - "'xx) (17)

= Re "'yltx - Re "'xgy + 2"'xy((xx - (yy) + 2(xy("'yy - "'xx).

This result implies thatgxx + gyy is a combination offirst and second derivatives of'" and (, which can
be approximated to a truncation error of order a(h') by the 3 x 3 grid points. That is, I, in (16) can be
approximated by

"'j' (j' 0 ::; j ::; 8, giving a truncation error of order O(h6). We now consider the tenn
I,. First notice that

h3

"'13 := "', -
"'3 = 2h1jJx+ 3 "'xxx + a(h'),

h3
"'24:= "', - "'4 = 2h"'y+ 3"'m + a(h').
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The above results, together with similar ones for I, yield

_ 2 2h4
( 6)"'241"- "',,124 - 4h g + T ("'yl= + Ix"'m - "'xlm - Iy"'=) + a h . (18)

This result implies that approximations for h2g (or, equivalently, for II) may involve the use of
"'=,

"'yyy,1=, Iyyy. However, in order to approximate these third derivatives to O(h2), extra points outside
the (3 x 3)-point domain are required. To avoid this, we observe that

"'yl= + Ix"'m - "'xlm - Iy"'= = "'y(Ixx+ I",)x-"'/_ + ((1/1xx+ 1/1",)y- Ix1/1xxy

-1/1xrlxx + I",)y +1/1xlxxy- I(1/1xx+ 1/1",)x+ Iy1/1_

= Re 1/1~x - Re 1/1xgy-1/1/_ - Ix1/1xxy+ 1/1xlxxy+ Iy1/1",x" (19)

Combining (18) and (19) gives

12h2g = 31/1241" - 31/1,,124 - 2h4(Re 1/1"gx - Re 1/1$y -1/1/"" - Ix1/1"", + 1/1xl"", + Iy1/1",,) + O(h6).

The above result, together with (17), yields

12h2g + h4(gxx + g",) = 3(1/1241"-1/1,,(24) + h4(TI + T2 + T3) + O(h6), (20)

where
TI = Re (1/1xgy-1/1~x)

= Re (1/1xlx1/1",+ 1/1yly1/1xx+ 21/1x1/1yl"-1/1xly1/1" -1/1ylx1/1" -1/1;1", -1/1;Ixx),

T2 = 21/1,,(Ixx- I",) - 21"(1/1,, -1/1",),

T3 = 2(1/1/"" + Ix1/1"",-1/1xlxxy - Iy1/1_).

It is clear that each term in Tj, T2and T3 can be approximated up to O(h2) within the nine-point stenciL
We quote some samples of the difference formulae to be used:

UI + U3- 2uo
O(h2 ) _ U5 - U6 + U7 - U8 O(h2 )Uxx

h2 + , Uxy - 4h2 + 1

_ UI - U3
O (h2 ) U5 + U6 - U7 - U8 - 2(U2 - U4)

O (h2 )Ux - v;- +,
U"'" 2h3

+.

Finally we obtain

TI = ::. [1/1"1,,1/1204+ 1/1241241/1103+ !1/1,,1/124(I56+ (78) - ~(1/1"I24 + 1/124(13)(1/156 + 1/178)

-1/1;31204 -1/1i41103] + O(h2),
I I ( 2)T2 = 2h4 (1/156+ 1/178)(112+ (34) - 2h4

(\56 + (78)(1/112+ 1/134)+ a h ,

2 2 I I I
T3 = - h4 1131/124+ h41/113\24 + 2h41/124(\56 - (78) + 2h4 113(1/157+ 1/168) - 2h4 124(1/1'6-1/178)

- 2~4 "'13(\57 + (68) + O(h2).

Substituting the above results into (20) and using (16), we obtain the fourth-order compact scheme (7).
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