
APPM 2460

IF, FOR, AND WHILE

1. Introduction

Today we will learn a little more about programming. This time we will learn how to use for loops,
while loops and if statements.

Suppose we want to print even numbers between 2 and 20. We could write a script as follows:

disp(2)

disp(4)

disp(6)

...

and so on. You now see how tedious this would be. An easier way would be to use something called a
loop, which is a programming tool that allows us to easily repeat commands. We will learn about two
types of loops, for loops and while loops. For loops are the most commonly used type of loop, so we will
begin with those.

2. The For Loop

A for loop repeats an operation a set number of times, usually using a variable whose value changes
size each time the loop runs. For the above problem, we would want to loop through a variable that takes
values 2, 4, 6, 8, and so on, up to 20, and display the variable each time we execute the loop. Let’s see
how to do that.

Let’s give it a try. Enter the following into a new script, and run it.

for i = 1:10

disp(2*i)

end

The for-loop works in the following manner. We give the loop a variable, in this case i, and we start it at
1, taking steps of size 1 (by default), until i equals 10. The inside of the loop tells Matlab to display the
value of 2 ∗ i at each step. Run this file to see what it does.

Notice the syntax here. The for declaration is followed by a series of statements that Matlab executes
until it reaches the end statement. That is to say, the commands that get repeated by Matlab are those
sandwiched between the for and end statements. Matlab runs the commands between the for and end

once for each element in the vector 1:10. We say that we are “looping over” the vector 1:10. We could
just as well use any vector, for example

for i = [1 5 3 2 9]

disp(i)

end

Try the above, and see what it does!
A note on syntax: there is never a semicolon after the for declaration statement.

2.1. Something more complicated. Let’s use a for-loop to make some plots of y = a ∗ sin(x), where
a = 0.2 ∗ k, k = 1, 2, 3, 4, 5, and x is in the interval [0, 1]. Let’s make it so it plots on the same figure each
time. Modify for ex.m as follows:

hold on

x = 0:.05:1

for k = 1:1:5

a = 0.2*k;

plot(x,a*sin(x));
1

2 APPM 2460 IF, FOR, AND WHILE

end

hold off

Any time you need to repeat something a known amount of times, consider using a for-loop. It will
save you a great deal of time and effort. And yes, you can put one for-loop inside another one. Just be
sure to use a different counter variable for the second loop.

3. Logic Operators

Before we move on to while loops and if-statements, we need to learn about logic operators to be used
with the if-statements. We start with ‘and’ and ‘or’. The logical operator for ‘and’ is &. The logical
operator for ‘or’ is |. The | button is right above the enter button.

The & operator simply takes two statements and returns the value of true only if both are true, and
returns false otherwise.

P Q P&Q
true true true
true false false
false true false
false false false

For example, 3 is an integer & 4 is even. This is true because both statements are true. In fact,
the only case where the & operator is true is if both statements are true statements. Otherwise, it is
considered false.

The | operator is much nicer. It takes two statements as well, and has a True or False value associated
with it too.

P Q P|Q
true true true
true false true
false true true
false false false

For example, 3 is larger than 4 | 4 is prime. This is false because both statements are false. In fact, the
only case where the | is false is when both statements are false statements. Otherwise, if either statement
is true then the whole ‘or’ statement is true.

4. The If-Statement

Before, we were using a for loop to loop through a set of instructions a given number of times. An
if-statement will perform a set of instructions once the right conditions are met. The syntax is

if (condition goes here)

action to be performed

end

The conditions you can put in are either equal(==), not equal (∼=), less than (<), less than or equal
to (<=), greater than (>), and greater than or equal to (>=). Let’s do an example. Open an M-file and
call it “if example.m” If the value of some number, a, is greater than or equal to zero, then we’ll print
out the value. Type

for a = -3:1:3

if a >= 0

disp(a)

end

end

See how the values of a that were greater than or equal to zero were printed to the command window?
Note that we have nested an if-statement inside the for-loop. You can nest if-statements and for loops
as many times as needed. We can have more than one condition in our if-statements. If we want two
conditions to hold, we use the ‘and’ operator &, which is found on the 7 key. If we want either one of two
conditions to hold we use the ‘or’ operator, |, which is found above the enter key.

APPM 2460 IF, FOR, AND WHILE 3

Let’s take the previous example and make it work only for a greater than or equal to zero, but also less
than 2. Try

for a = -3:1:3

if (a>=0)&(a<2)

disp(a)

end

end

We can modify the if-statement so that if the condition is not met, it does something. We use the else
statement for this. Let’s take the previous example, and make it so that if 2 ≤ a ≤ 3, then we print 4 ∗ a.
Type

for a = -3:1:3

if (a>=0)&(a<2)

disp(a)

else

disp(4*a)

end

end

We can make the else statement have a condition on it by typing elseif instead of else and then giving
it a condition just like we did before. We can have more than one elseif statement if needed.

So let’s give a couple of examples. In both examples, we will be calculating the factorial of a number.
Create two functions, ”factorial 1” and ”factorial 2” which take an input value and output the factorial
of that value. We must first make sure that the integer being used is positive. We must also make sure
that if it is zero, we set the value equal to 1. We could do this by nested if-statements or by just one
if-statement with an elseif.

We begin with the nested if-statements.

a = 6; % or whatever number you want to calculate the factorial of

if a>=0

f = 1;

if a == 0

return

end %end if-statement

for i = 1:a

f = f*i;

end %end for loop

end %end if-statement

disp(f) % the factorial of a

Notice, each if-statement needs an end for this to work. This way also requires a return inside the nested
if-statement. Otherwise, the program would still run the for loop and give a wrong answer.

Finally, we show the same process except with the elseif

a = 6; % or whatever number you want to calculate the factorial of

if a<0 % return an error message if a is negative

disp(’Negative Integer’);

elseif a == 0

f = 1;

else

f = 1;

for i = 1:a

f = f*i;

4 APPM 2460 IF, FOR, AND WHILE

end %end for loop

end %end if statement

disp(f) % the factorial of a

Notice, there is only a need for one end on the if-statement. There is also no need for a return call because
the structure of the if-statement only allows for one outcome to occur. We do not have to worry about
the for loop being executed when a = 0.

5. While Loops

A while-loop is another way of repeating a statement. You use while loops when you are not sure
how many steps the process will take. The while loop has a condition statement that it checks each
time it repeats. If the condition is true, it will repeat the body of the loop. If the condition is false, it
will go to the next line after the end of the loop. Note that it is very easy to get stuck in a while
loop if your condition is always true. When this happens, your code will just run forever.
Be careful of this.

For example, suppose you wanted to double the number 2 over and over again until you got to a number
over 1,000,000, and see how many times you had to double in order to obtain that result. We could write
a while-loop that performs that task as follows:

number = 2;

counter = 1;

while number <= 10^6

number = 2*number;

counter = counter + 1;

end

6. Homework

The binomial coefficient
(
n
k

)
(read n choose k) is defined as(

n

k

)
=

n!

(n− k)!k!

where the ! is the factorial symbol (i.e. 5! = 5 * 4 * 3 * 2 * 1 = 120) and n and k are non-negative integers
with n > k. Write a script that calculates n choose k without using Matlab’s built-in factorial

function. This will involve multiple loops.
You should also include if statements that return an error (for example, disp(’Danger Will Robinson!’))

if n is less than k, or if either are negative. Using copy and paste, have your loops run once in the scenario
where everything works, and once where an error message gets returned. (We’ll see a more elegant way
to do this, using functions, next week).

