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Hydrodynamic optical soliton tunneling
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A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon
an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers
considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and
the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits
a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave
(Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving
hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction
of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation
system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or
trapping. Another Riemann invariant yields the tunneled soliton’s phase shift due to hydrodynamic interaction.
Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation
direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in
optical fibers.
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I. INTRODUCTION

The tunneling of wave packets incident upon a potential
barrier is a defining quantum mechanical property [1]. The
linear phenomenon can be extended to nonlinear solitonic
wave packets or solitons—localized, unchanging waveforms
in which nonlinear and dispersive effects are in balance. In the
original consideration of a soliton incident upon a potential bar-
rier, it was found that the soliton can losslessly pass, or tunnel,
through a localized repulsive or attractive potential [2]. The
connection of this so-called soliton tunneling with quantum
mechanical tunneling was established in an optical setting in
Ref. [3] where a bright optical pulse propagating in an optical
fiber with anomolous dispersion was transmitted through a
localized defective region of normal dispersion—the analog
of a potential barrier.

Soliton tunneling has been studied theoretically recently in
various physical systems including optical media [4–7], ne-
matic liquid crystals [8,9], and matter waves in Bose-Einstein
condensates (BECs) [10,11]. Recent experiments observed the
nonlinear analogs of some linear quantum features including
nonlinear scattering [12], reflection and ejection [13], and
soliton tunneling [14]. In a related vein, analogies between
soliton tunneling and other physical effects were considered in
Refs. [15–17].

In the focusing (anomalous dispersion) regime, nonlinear
optical plane wave propagation is subject to modulational
instability with respect to long wavelength perturbations [18].
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In contrast, plane wave propagation in the defocusing (normal
dispersion) regime is stable and, remarkably, exhibits many
features characteristic of fluid motion [19]. The dispersive
effects in such a “fluid of light” are due to diffractive or
chromatic properties of the medium. The dispersive hydrody-
namic behavior of light propagation has been considered and
observed in a number of works; see, e.g., Refs. [20–22].

Robust features of the diffraction of laser light in a nonlinear,
defocusing medium and matter waves in a repulsive BEC
include dark solitons, moving depression waves whose width
is proportional to the coherence length l of the medium. In
addition to solitons, these media also support spatially ex-
tended, smooth configurations that can exhibit wave breaking
and the spontaneous emergence of highly oscillatory dispersive
shock waves (DSWs) [23]. Optical DSWs have been observed
in both bulk media [20] and optical fibers [24]. While the
DSW oscillatory length scale is also the medium’s microscopic
coherence length l, DSWs exhibit expanding, rank-ordered
oscillations spanning a larger, macroscopic coherence length
scale L, which increases with time. This latter length scale
also characterizes nonoscillatory hydrodynamic flows such
as expansion or rarefaction waves (RWs) and compressive
Riemann waves that have recently been observed in optical
fibers in the context of wave-breaking control [25]. The scale
separation l � L, a natural characterization of dispersive
hydrodynamics [26], enables a mathematical description of
DSWs via nonlinear wave, Whitham averaging [23,27], while
RWs are described by the long-wave (hydrodynamic), disper-
sionless limit of the original equations.

Despite the fact that solitons, RWs, and DSWs are well
known, fundamental features of dispersive media, soliton-RW,
and soliton-DSW interactions have been mostly overlooked.
As we show, these interactions motivate an alternative notion
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of optical tunneling whereby a dark soliton incident upon
a spatially extended hydrodynamic barrier in the form of a
DSW or a RW can penetrate through to the other side of
the evolving hydrodynamic structure. Thus, in contrast to the
traditional notion of soliton tunneling through an externally
imposed barrier, hydrodynamic soliton tunneling corresponds
to the full penetration and emergence of the soliton through an
intrinsic hydrodynamic state that evolves according to the same
equation as the soliton. This generalizes the understanding of
a soliton as a coherent, particle-like entity that can interact
elastically with other solitons [28] and dispersive radiation [29]
to one that can also interact with nonlinear hydrodynamic states
and emerge intact, i.e., without fissioning or radiation, albeit
with a different amplitude that results from a change in the
background mean flow.

In this paper, we analyze the tunneling of solitons through
hydrodynamic states within the framework of the integrable,
defocusing nonlinear Schrödinger (NLS) equation, which is
an accurate model for nonlinear light propagation in single
mode optical fibers with normal dispersion [30]. We invoke
the scale separation l � L inherent to Whitham modulation
theory in order to derive a system of asymptotic equations
that describe the interaction between narrow dark solitons
and evolving, broad hydrodynamic barriers. We obtain the
conditions on the incident soliton amplitude and hydrodynamic
mean flow density and velocity for tunneling. One of the
fundamental properties of hydrodynamic soliton tunneling is
hydrodynamic reciprocity whereby the tunneling through RWs
and DSWs is described by the same set of conditions in spite of
the very different interaction dynamics. This general property
of solitonic hydrodynamics has been recently formulated and
experimentally confirmed for a fluid system [31]. We also
show that tunneling is not always possible and that the soliton
can be absorbed or trapped within the hydrodynamic flow.
Moreover, we find that soliton interaction with hydrodynamic
states can lead to reversal of the soliton’s propagation direction
and spontaneous soliton cavitation.

Our analysis can be applied to a large class of dispersive
hydrodynamic systems, including dispersive Eulerian equa-
tions [23,32] which have broad applications. The particular
case of optical hydrodynamic soliton tunneling considered
here could be observed, for example, within the experimental
setting described in Ref. [22] for the generation of DSWs and
RWs in optical fibers. This work generalizes unidirectional
solitonic hydrodynamics to the optical setting where waves
can propagate bidirectionally.

II. PROBLEM FORMULATION

We consider the defocusing NLS equation

iψt = −1

2
ψxx + |ψ |2ψ, (1)

where in the context of fiber optic propagation, t is the
longitudinal coordinate in the fiber, x is the retarded time,
and ψ(x,t) is the complex-valued, slowly varying envelope of
the electric field. All variables are nondimensionalized to their
typical values. See, e.g., Ref. [22] for a detailed description of
NLS normalizations and typical values of physical parameters
pertinent to the regimes considered here.

Equation (1) can be written in dispersive hydrodynamic
form via the transformation ψ = √

ρeiφ , u = φx :

ρt + (ρu)x = 0, ut + uux + ρx =
(

ρxx

4ρ
− ρ2

x

8ρ2

)
x

, (2)

where ρ is the optical power and u is the chirp. In terms
of the hydrodynamic interpretation of these quantities, we
will refer to ρ as a mass density and u as a flow velocity
(see, e.g., Ref. [23]). Within this setting, the normalized
coherence length is l = ρ

−1/2
0 where ρ0 is a typical density

scale. The coherence length is an intrinsic scale that, along
with the coherence time τ = ρ−1

0 , corresponds to a scaling
invariance of the hydrodynamic equations (2). In BECs, l is
known as the healing length [33].

Equation (2) admits the localized, dark soliton solution

ρ(x,t) = ρ − a sech2[
√

a(x − ct − x0)],

u(x,t) = u ±
√

ρ − a[1 − ρ/ρ(x,t)],

c = u ±
√

ρ − a, (3)

where a is the maximum deviation from the mean density ρ, u
is the mean flow velocity, and c is the soliton amplitude-speed
relation. The ± in (3) is due to the bidirectional nature of the
NLS equation as a dispersive hydrodynamic system (2). When
a = ρ, the soliton is called a black soliton because its minimum
is a zero density, cavitation point.

The typical tunneling problem consists of a soliton incident
on a fixed potential barrier, either due to a change in the medium
or an external effect. However, the spatio-temporal barriers
considered here evolve according to the same equation that
describes the dynamics of the medium. For an optical fiber
with homogeneous, normal dispersion, this corresponds to a
time-dependent input signal that results in both a soliton and
a large-scale barrier. We assume that the hydrodynamic mean
flow (ρ,u) that develops from the initial data varies on much
longer length and time scales L � l, T � τ , respectively. In
this regime, the third order dispersive term in (2) is negligible,
resulting in the long-wave, dispersionless, quasilinear equa-
tions for the mean flow ρ → ρ, u → u:

rt + 1

2
(3r + s)rx = 0, st + 1

2
(r + 3s)sx = 0, (4)

written in diagonal form where

r = u/2 −
√

ρ, s = u/2 +
√

ρ (5)

are the Riemann invariants. In fact, Eqs. (4) are the shallow
water equations in one dimension, and RWs are determined
exclusively by the constancy of r or s [34]. Remarkably,
the same constant Riemann invariant determines the loci of
simple wave DSWs [23], in contrast to viscous shock waves
of classical fluid dynamics, whose loci are determined by the
Rankine-Hugoniot conditions [34].

We consider the problem of a dark soliton (3) incident upon
a barrier that evolves from step initial data in the mean flow
ρ(x,0), u(x,0), where

ρ(x,0) =
{
ρ− x < 0
ρ+ x > 0 , u(x,0) =

{
u− x < 0
u+ x > 0 . (6)
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FIG. 1. Hydrodynamic soliton tunneling configurations:
(a) soliton-RW collision, (b) soliton-DSW collision, (c) RW
overtaking soliton, (d) DSW overtaking soliton.

As we will show, the long-time evolution of soliton-
hydrodynamic barrier interaction is determined by the far-field
flow conditions ρ± and u±. Therefore, our theory generalizes
to soliton tunneling through arbitrary hydrodynamic barriers
with given far-field conditions.

The step initial conditions (6) generally evolve into a
combination of two waves: RWs and/or DSWs each char-
acterized by a simple-wave locus of the dispersionless limit
system (4) [23,35]. Therefore, we shall be imposing a simple-
wave constraint on the initial mean flow data (6), i.e., we
assume that either r(x,0) or s(x,0) found from (5) is constant
across x = 0 so that the mean flow will evolve into a single
expanding hydrodynamic wave, either a RW or a DSW. Due
to the bidirectional nature of the NLS equation, there are four
distinct configurations, defined by the direction of the jump
(up or down) of the Riemann invariant r or s across x = 0.
We will focus on the two cases that result in a RW or a DSW
when r(x,0) is constant. These two configurations along with
an incident dark soliton moving to the left or right define four
basic cases of hydrodynamic soliton tunneling considered here
and shown in Fig. 1.

We pause briefly to note some common terminology in the
nonlinear waves literature [23]. The RW and DSW depicted in
Fig. 1 are referred to as a 2-RW and a 2-DSW, respectively, be-
cause their characteristic wave speeds degenerate to the fastest
long wave speed u0 + √

ρ0 when ρ+,ρ− → ρ0, u+,u− → u0.
The other two cases where s(x,0) is constant correspond to
a 1-RW or a 1-DSW because their speeds degenerate to the
slowest long wave speed u0 − √

ρ0. These 1-waves can be
obtained from the 2-waves considered here with the reflection
invariance x → −x, u → −u of Eqs. (2).

To describe how the mean flow couples to the soliton am-
plitude during the interaction, we utilize Whitham modulation
theory [27]. The general framework for Whitham modulation
theory encompasses slow modulation on the space and time
scales L and T of a periodic wave’s parameters, which lead to
a system of quasilinear partial differential equations (PDEs) for
the parameter evolution. For the NLS equation, the modulation
equations are a system of four equations that can be written in

diagonal form [23,36–38]:

∂ri

∂t
+ Vi(r)

∂ri

∂x
= 0, i = 1, . . . ,4. (7)

The Riemann invariants r satisfy r4 � r3 � r2 � r1 and vary
on the much larger spatiotemporal scales L and T than the
scales l and τ of the soliton (3). The characteristic velocities
are computed via

Vi(r) =
(

1 − λ

∂iλ
∂i

)
U, (8)

where ∂i = ∂
∂ri

, and

λ = 2K(m)√
(r4 − r2)(r3 − r1)

, U = 1

2

4∑
j=1

rj (9)

are the wavelength and phase velocity of the under-
lying cnoidal wave, respectively. Here K(m) is the
complete elliptic integral of the first kind and m =
[(r2 − r1)(r4 − r3)]/[(r4 − r2)(r3 − r1)]. The characteristic ve-
locities exhibit the ordering Vi � Vj if 1 � i � j � 4. The
wave amplitude is a = (r2 − r1)(r4 − r3). By setting all but
one Riemann invariant constant, we obtain an equation for a
simple wave of modulation, which we call a j -wave, where j

is the index of the nonconstant, varying Riemann invariant.
Equation (7) is consistent with the wave conservation law:

kt + (kU )x = 0, k = 2π/λ. (10)

Soliton-mean field interaction is described by the soliton
limit of the NLS-Whitham equation (7), which is achieved
when r2 = r3 (see, e.g., Ref. [23]). By analyzing the expres-
sion (8) for the characteristic velocities in the soliton limit
r2 = r3, it is possible to establish that the limiting modulation
system consists of shallow water equations (6) where s = r4,
r = r1 and the equation for the merged Riemann invariant r3

is [23]

r3,t + 1

2
(r + 2r3 + s)r3,x = 0, (11)

with

r3 = ū/2 ± √
ρ̄ − a, (12)

where the two signs are due to bidirectionality [cf. the second
and third formulas in Eq. (3)].

Thus, effectively, Eq. (11) is the equation for the soliton
amplitude a(x,t). Crucially for our consideration, the soliton
amplitude here is a spatio-temporal field, satisfying a PDE,
while in standard soliton perturbation theories [39], the soliton
amplitude has only a temporal dependence that satisfies an
ODE along the soliton trajectory. The trajectory and dynamics
of a single soliton from the amplitude field can be interpreted as
the introduction of a fictitious train of noninteracting solitons of
the same amplitude and some small wave number 0 < k � 1,
which necessarily satisfies the wave conservation equation (10)
with U = 1

2 (r + 2r3 + s) = c, the soliton amplitude-speed
relation. Using the limiting system (4), (11), the wave con-
servation equation (10) can be written in diagonal, Riemann
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invariant form:

(kp)t + c(kp)x = 0,

p = exp

[
−

∫ s

s0

dcs
ds

1
2 (r + 3s) − c

ds

]
, (13)

where s0 is some fixed reference value, e.g., s−.
Thus, the initial conditions (6) for the hydrodynamic barrier

should be complemented by similar conditions for the soliton
amplitude field and the small wave number,

a(x,0) =
{
a− x < 0
a+ x > 0 , k(x,0) =

{
k− x < 0
k+ x > 0 , (14)

where only the incident amplitude a+ is given at the onset
(recall the configurations in Fig. 1).

The hydrodynamic soliton tunneling problem then consists
in finding (i) the transmitted soliton amplitude a− and (ii) the
stretching (contraction) coefficient k+/k− for the soliton train
that determines the soliton phase shift due to tunneling. We
will show that k+/k− is independent of the particular choice
of k+ (or, separately, k−).

Concluding this section, we note that the long wave limit
of the Whitham equations demonstrates that while the soliton
amplitude is coupled to the evolving mean flow, the mean flow
itself evolves independently of additional localized nonlinear
waves.

III. HYDRODYNAMIC SOLITON TUNNELING

We shall consider the basic tunneling configurations de-
picted in Fig. 1, which are defined by constancy of the hydrody-
namic Riemann invariant r in the step initial data (6). Without
loss of generality, one can choose (ρ−,u−) = (1,0), the re-
maining configurations can be deduced from scaling, Galilean
shifts, and reflection symmetries associated with Eq. (2).

We note that, given step initial conditions, the hydrody-
namic system (4) is valid only if the resulting wave is a RW.
This implies that the reduced single-phase modulation sys-
tem (4), (11), and (13) describes only soliton-RW interactions
[cases (a) and (c) in Fig. 1]. Indeed, soliton DSW interaction is
more complicated and generally requires consideration of two-
phase NLS modulation equations [37]. Remarkably, however,
we will show that the soliton-DSW tunneling conditions for
cases (b) and (d) can be found from the soliton-RW tunneling
conditions via hydrodynamic reciprocity.

Let us assume that r(x,0) has no jump across x = 0
and the jump in s(x,0) resolves into a RW. The modulation
equations (4), (11), and (13) with step initial conditions for
s, r3 and kp found from (6) and (14) imply the simple wave
solution in which r = r1, r3, and kp are constant for all (x,t)
but s = r4 is varying in a self-similar fashion, s = s(x/t).
This 4-wave modulation solution describes the hydrodynamic
tunneling configurations (a) and (c) in Fig. 1. An example
4-wave evolution is shown in Fig. 2.

The tunneling problem now essentially reduces to finding
the constant values of r3 and kp given the constant value of
r = u+/2 − √

ρ+ = u−/2 − √
ρ− = −1 and the initial jump

for s found from (6) so that the Riemann invariants resemble
those in Fig. 2. The solution for s(x/t) will then define the
soliton trajectory through a hydrodynamic RW barrier.

x/t

r̄

r2 = r3

s̄ = s−

s̄ = s+

r4

r1

ū+ +
√

ρ̄+ū− +
√

ρ̄−

FIG. 2. Hydrodynamic soliton tunneling configuration of the
Riemann invariants for soliton-RW interactions.

The requirement of constancy of r3 defined by Eq. (12) when
evaluated with (6) and (14) yields a simple algebraic expression
for the transmitted soliton amplitude through a RW:

a− = a+ − 2(
√

ρ+ ± √
ρ+ − a+)(

√
ρ+ − 1). (15)

Importantly, tunneling through the hydrodynamic barrier re-
quires 0 < a− � 1. The ± in Eq. (15) corresponds to the two
branches of r3 with “−” corresponding to the collision case
depicted in Fig. 1(a) and “+” the overtaking case depicted in
Fig. 1(c). The transmitted, or tunneled, soliton amplitude-speed
relation is then

c− = ±
√

1 − a−

= 1

2
(r + r3 + s−), (16)

with a− given by Eq. (15). The expression for the soliton
velocity c− in terms of Riemann invariants is a convenient
representation that inherently incorporates the appropriate sign
±. We shall also explore implications of constancy of kp.

The formulas (15) and (16), in spite of their simplicity,
exhibit a number of remarkable implications. These include
soliton tunneling, soliton trapping, the spontaneous emergence
of a cavitation point, and soliton direction reversal. Further-
more, the obtained conditions incorporate the fundamental no-
tion of hydrodynamic reciprocity established for unidirectional
systems of the Korteweg-de Vries (KdV) type in Ref. [31]. This
states that the tunneling conditions are the same for both the
RW and DSW. This concept enables the application of Eqs. (15)
and (16) to soliton-DSW interaction.

To extend the reciprocity result of Ref. [31] to the hy-
drodynamic optical tunneling studied here, we consider a
general case where the left background state is (ρ−,u−) [not
necessarily (1,0)] and take either r(x,0) or s(x,0) constant. This
generalization will require consideration of both branches of
r3 in Eq. (12) and in the tunneling condition (15). Hydrody-
namic reciprocity ultimately results from the time and space
reversibility of the NLS equation (1).

We first consider the soliton-DSW interaction case where
ρ− > ρ+ so that the DSW is known as a 2-DSW [23].
The soliton is initially located to the right of the DSW so
that the hydrodynamic transition across the DSW satisfies
a 4-wave modulation curve in which r = r1 = const (see
Refs. [23,35]):

u− − u+ = 2(
√

ρ− − √
ρ+). (17)
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FIG. 3. Time reversibility of initial data (ρ+,a+) and (ρ−,a+) with
ρ+ < ρ−. Forward temporal evolution results in soliton interaction
with a 2-DSW (upper half plane), and backward evolution results in
soliton interaction with a 1-RW. Soliton trajectories are depicted with
solid and dashed curves.

The nonlinear superposition of a soliton and a DSW can
be achieved by considering the modulation of two-phase
(quasiperiodic) solutions of the NLS equation (1) [37]. There-
fore, a description of the full soliton-DSW modulation would
require the integration of the two-phase Whitham equations.
However, we can determine all the results of soliton-DSW
interaction by invoking continuity of the modulation solution
for negative time.

If we now consider t → −t for the Whitham modulation
equations (7), then the characteristic velocities −Vi are re-
ordered. The same initial data ρ− > ρ+ and the locus (17)
corresponds to the generation of a 1-RW. If a soliton of
amplitude a− is initialized to the left of the RW, then soliton-
RW interaction is determined by the constancy of r3 so that the
tunneled soliton amplitude satisfies

a+ = a− − 2(
√

ρ− ± √
ρ− − a−)(

√
ρ− − √

ρ+), (18)

where the ± corresponds to the same branch of r3 that is
taken. The relation (18) corresponds to a 1-wave modulation
of the time-reversed Whitham equations. This is a global
relationship that must also hold for the corresponding 4-
wave soliton-DSW modulation of the nonreversed Whitham
equations due to continuity of the modulation solution away
from the origin. This analysis is pictured in Fig. 3, where,
for negative time, a soliton-RW interaction is pictured and a
soliton-DSW interaction is shown for positive time.

Equation (18) can be inverted to obtain a− in terms of a+ and
ρ±. If we set ρ− = 1 and u− = 0, then Eq. (18) and Eq. (15)
are equivalent. The tunneling condition (15) is the same for
both soliton-RW and soliton-DSW interaction.

Another way to understand hydrodynamic reciprocity is
schematically pictured in Fig. 4. Rather than reversing time,
this figure depicts spatial reversal. A soliton of amplitude a+
initially placed to the right of a jump with ρ− < ρ+ results in
soliton interaction with a 2-RW and a− satisfying Eq. (18).
Now, consider a spatially reversed jump with ρ̃± = ρ∓ so

ρ̄− ρ̄−

ρ̄+ ρ̄+

ρ̃+ρ̃+

ρ̃− ρ̃−

ã+ = ā−
ρ̃± = ρ̄∓

ā+ = ã−
ρ̄± = ρ̃∓

ã−
ã+

ā−
ā+

FIG. 4. Sketch of configurations demonstrating hydrodynamic
reciprocity. Horizontal arrows refer to temporal evolution, and vertical
arrows connote the transformation to the reciprocal initial condition.

that ρ̃− > ρ̃+. With a soliton of amplitude ã+ = a− initially
placed on the right, the soliton interaction with a 2-DSW results
in the tunneled amplitude ã− = a+. This is the bidirectional
generalization of the unidirectional hydrodynamic reciprocity
condition noted in Ref. [31].

In what follows, we compare the modulation theory pre-
dictions for hydrodynamic optical soliton tunneling with nu-
merical simulations of Eq. (1) for initial data comprised of
a smoothed step Eq. (4) and a soliton. We use a standard
sixth order finite difference spatial discretization with Dirichlet
boundary conditions. Time evolution is achieved with the
standard fourth order Runge-Kutta method. The numerical
evolution was validated by the numerical evolution of the exact
solitary wave solution on a uniform background (3).

Comparisons between the transmitted soliton amplitude
predicted by Eq. (15) and numerical simulations are given
in Fig. 5, showing excellent agreement. When the tunneling
relation (15) is not satisfied for a± > 0, the soliton will become
trapped within the spatially extended hydrodynamic state.
Trapping then results in the soliton acting as a nonlinear
modulation of the hydrodynamic structure. Examples of a
soliton trapped in a hydrodynamic barrier are shown in Fig. 6,
where the soliton was unable to pass through the RW or
DSW for long simulation times. Soliton-DSW trapping can
be viewed as the formation of a “defect” in the locally periodic
DSW structure, analogous to the soliton defects of KdV cnoidal
waves considered in Ref. [40]. In contrast to classical optical
soliton tunneling in which the localized pulse can be reflected
by a barrier with sufficient energy, this is not possible in the
context of hydrodynamic optical tunneling.

The simplest tunneling configuration is that of a solitary
wave though a RW because the evolution of the macroscopic
structure of the RW can be determined by standard methods
applied to the modulation Eqs. (4) and (11). The RW evolution,
in terms of the Riemann invariants, is

sRW(x,t) =
⎧⎨
⎩

s− x < V−t
1
3

(
2 x

t
− r

)
V−t � x � V+t

s+ V+t < x

, (19)

where V (s,r) = 1
2 (3s + r) and V± = V (s±,r) are the edge

speeds of the centered RW [34]. We note that small amplitude
linear oscillations may be present at an edge of the RW in
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FIG. 5. Comparison between the tunneling relation (15) (solid
curves) and direct numerical simulations of the NLS equation (dots)
with smoothed, step initial data defined by ρ+ > 0 and a soliton
of amplitude a+. (a) The overtaking cases in Figs. 1(c) and 1(d).
(b) The collision cases in Figs. 1(a) and 1(b). Filled dots correspond
to the emergence of a black soliton. The grey regions correspond to
soliton-DSW tunneling and white regions correspond to soliton-RW
tunneling.

the full NLS dynamics due to dispersive regularization, but
these oscillations decay and have negligible influence on the
asymptotic RW behavior. The trajectory of the soliton center
xs is a characteristic (2- or 3-characteristic) of the Whitham

FIG. 6. Numerical simulation of hydrodynamically trapped soli-
tons. (a) Soliton of amplitude a− = 0.25 sent into a 2-DSW with
ρ+ = 0.5. (b) Soliton of amplitude a+ = 1 overtaken by RW with
ρ+ = 4.

modulation equations (7) that satisfies the initial value problem

dxs

dt
= c(r,s,r3), xs(0) = x+. (20)

Here x+ is the location of the solitary wave at t = 0 and the
location of the step (6) is taken to be x = 0; c is the soliton
amplitude-speed relation (16) written in terms of Riemann
invariants. A direct integration of (20) results in the location
of the solitary wave tunneling through a rarefaction wave

xs(t) =

⎧⎪⎪⎨
⎪⎪⎩

x+ + c+t x � t1

(r + r3)t + 3(s+ − r3)t2/3
1 t1/3

2
t1 < x < t2

x− + c−t t � t2

, (21)

where

t1 = x+/(s+ − r3),

t2 = (s+ − r3)3/2(s− − r3)−3/2t1,

x− = (s+ − r3)1/2(s− − r3)−1/2x+,

c± = 1
2 (r + 2r3 + s±).

The effective phase shift of the soliton center through a RW is
given by the difference in the x-intercepts of the linear soliton
trajectories post- and pre-hydrodynamic interaction:

x+ − x− =
(

1 −
√

s+ − r3

s− − r3

)
x+. (22)

An alternative, instructive way to determine the interaction
phase shift is to analyze the additional modulation equa-
tion (13) that describes the evolution of the wave number
0 < k � 1 in a train of well-separated, noninteracting solitons
with the amplitude field a(x,t). Given the mean flow sRW(x,t)
in (19), the amplitude field a(x,t) is determined by the
constancy of r and r3 in Eq. (12). The soliton phase shift now
follows from the requirement of constancy of the Riemann
invariant pk of Eq. (13) across the initial step (6) and (14).
Indeed, equating the values of pk at both sides of the initial
step we find the ratio k+/k− = x−/x+, which determines the
stretching (contraction) of the soliton wave train at leading
order [31],

k+
k−

= x−
x+

= exp
∫ s+

s−

dc

ds
1
2 (r + 3s) − c

ds,

=
√

s+ − r3

s− − r3
, (23)

where the first term in the denominator is the characteristic
speed associated with s. This simpler approach yields the same
result as that obtained in Eq. (22) from Eq. (21).

We can now invoke the notion of hydrodynamic
reciprocity—the surprising fact that the interaction of the
soliton with a RW is the same as that with a DSW at the macro-
scopic level. In addition to the tunneling relation (15), the
phase shift (22) also applies to soliton-DSW interaction. The
macroscopic properties of the DSW itself—leading harmonic
edge speed and trailing soliton edge speed—are determined by
an analysis of the single phase Whitham equations in place of
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FIG. 7. Tracking a soliton through a RW and DSW via Eqs. (21)
and (25). (a) ρ+ = 2, a+ = 1 and the sign of r3 in Eq. (12) is “−.”
(b) ρ+ = 0.5, a+ = 0.5, the r3 sign is “−.” (c) ρ+ = 2, a+ = 2, the
sign of r3 is “+.” (d) ρ+ = 0.5, a+ = 0.4, the sign of r3 is “+.”
Predictions from Eqs. (21) and (25) are the red dashed curves, the
contours are from direct numerical simulation of Eq. (1).

the direct integration that was possible in the RW case. The
distinguished edge speeds of the DSW are given by [41,43]

V−,DSW = 2
√

ρ+ − 1,

V+,DSW = ū+ + ρ+ − 8
√

ρ+ + 8

2 − √
ρ+

. (24)

Incorporating the soliton phase shift Eq. (23) results in the
soliton trajectory before and after interaction

xs,DSW =
{

x+ + 1
2 (r + 2r3 + s+)t, x � t1

x− + 1
2 (r + 2r3 + s−)t, x � t2.

, (25)

where now, t1, t2 are determined by equating the pre and post-
interaction soliton trajectories with the appropriate DSW edge
velocities from Eq. (24). Comparisons with numerical simu-
lations of soliton-DSW interactions are shown in Figs. 7(b)
and 7(d) with excellent agreement. The trajectory prediction
Eq. (25) also correctly captures the phenomenon of soliton
direction reversal shown in Fig. 7(d).

The transition to a different mean flow across the hydrody-
namic barrier not only results in a controllable soliton trajectory
but also the generation of transmitted solitons of pre-specified
amplitudes [cf. Eq. (15)]. For specific initial configurations
of the tunneling problem, we predict and numerically observe
the spontaneous development of a black soliton that exhibits
cavitation or a null in the density at the soliton minimum
which is demonstrated in Fig. 8. Black soliton solutions are
characterized in the normalization considered here by an
amplitude a− = 1 with an associated π phase jump across the
soliton minimum. In the reference frame chosen, the soliton
velocity on the left flow is given by c− = 0. The phenomenon
of so-called self cavitation of dispersive shock waves was

FIG. 8. Examples of the emergence of a black soliton after
tunneling in the characteristic plane. The initial configurations are
(a) RW collision case with ρ+ = 2, (b) DSW overtaking case with
ρ+ = 0.6. Initial soliton amplitudes are chosen so that a− = 1 in (15).
Numerically computed soliton trajectories (contours) are compared
against theoretical predictions of Eqs. (21) and (25). The snapshots
of the intensity ρ at t = 225 are shown above the contour plots.

theoretically predicted in [35] and both a zero density point and
the associated π phase jump was observed experimentally for
the dam break problem of spin waves in a defocusing magnetic
material [42]. Zero density points were also observed in an
optical “photon fluid” [22]. The interaction of a dark soliton
with a mean flow then gives a fundamentally new mechanism
for generating a cavitation point in the flow.

IV. CONCLUSION

In this work, we have introduced a notion of hydrodynamic
optical soliton tunneling where a localized, depression wave
or dark soliton is incident on a spatiotemporal hydrodynamic
barrier. Under the assumptions of nonlinear wave, Whitham
modulation theory, the evolution of the inhomogeneous mean
flow decouples from the soliton so that, at the leading order
macroscopic level, the flow is wholly unaltered by the presence
of the local pulse. The solution is found to be a self-similar
simple wave of a system of quasilinear partial differential equa-
tions whose characteristics determine both the mean flow and
the soliton trajectory. The self-similar simple wave obtained
evolves from an initial step in the flow to either a single DSW
or a RW but the approach generalizes to any initial state that
limits to different constants as x → ±∞, which define soliton
tunneling conditions.

The main result of this work is encompassed in the tunneling
and phase relations given by Eqs. (15) and (23). They determine
the transmitted soliton amplitude, speed, and position in terms
of only the incident soliton amplitude, its position, and the hy-
drodynamic flow in the far field. The known soliton trajectory
and amplitude following interaction provide a mechanism for
soliton control via interaction with a spatially extended mean
flow.

The notion of hydrodynamic reciprocity identified earlier
in Ref. [31] for scalar, KdV-type systems and generalized here
to the NLS case allows one to investigate a complex soliton-
DSW interaction by studying the simpler case of soliton-RW
interaction. Reciprocity implies that, although the tunneling
of a soliton through a DSW involves a complex interaction
with rapid nonlinear oscillations, they are unimportant for
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determining the resulting amplitude, velocity and shift of the
solitary wave post-interaction. The methodology presented
here to track the trajectory of the soliton only requires knowl-
edge of the far field boundary conditions and hence this
approach can be extended to other initial configurations. We
also note that the developed theory is not restricted to integrable
NLS dynamics and can be generalized to other cases of hydro-
dynamic optical soliton tunneling described by nonintegrable

versions of the defocusing NLS equation, e.g., with saturable
nonlinearity, using the methods of Refs. [23,32,44].
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