1. Let \(\{N(t)\} \) be a Poisson process with rate \(\lambda \).
 (a) Write down the generator matrix for \(\{N(t)\} \).
 (b) Write down a closed form expression for \(p_{ij}(t) \).
 (c) Write out the Kolmogorov forward equation for the process and verify that your answer to part (b) is a solution.

2. [Simulation] Simulate arrival times for a Poisson process with rate \(\lambda = 2.5 \). Count the number of arrivals you observe up to time \(T = 10 \). Repeat 100,000 times. From the 100,000 values obtained, estimate the distribution of the number of arrivals in \([0, T]\) and compare to the true distribution. Hand in your code.

3. Potential customers arrive at a single-server station in accordance with a Poisson process with rate \(\lambda \). If the arriving customers finds \(n \) customers already in the station, then he/she will enter the system with probability \(\alpha_n \). Otherwise, he/she will leave. Assuming an exponential service time with rate \(\mu \), set this up as a birth and death process and determine the birth and death rates. (You do not have to do the formal “little oh approach”.)

4. A small barbershop, operated by a single barber, has room for at most two customers. Potential customers arrive at a Poisson rate of three per hour, and the successive service times are independent exponential random variables with mean \(1/4 \) hour.
 (a) What is the average number of customers in the shop?
 (b) If the barber could work twice as fast, how much more business would he do?

5. Imagine a \(3 \times 4 \) lattice with 12 positions, 5 of which are occupied by a single particle. Each particle will jump to a new unoccupied site with rate 1. The site is chosen at random from the 7 unoccupied sites. Find the stationary distribution for the set of occupied sites. (Note: Label the sites as 1, 2, \ldots, 12. The answer will be some distribution \(\pi(i_1, i_2, i_3, i_4, i_5) \) where \(i_1, i_2, i_3, i_4, i_5 \) are distinct values in \(\{1, 2, \ldots, 12\} \).)

6. [Required for 5560 Students Only] (Durrett 4.24) Kolmogorov Cycle Condition. Consider an irreducible Markov chain with state space \(S \). We say that the “cycle condition” is satisfied if, given a cycle of states \(x_0, x_1, \ldots, x_n = x_0 \), with positive transition rates \((q_{x_{i-1},x_i} > 0) \) for \(i = 1, 2, \ldots, n \), we have
 \[
 \prod_{i=1}^{n} q_{x_{i-1},x_i} = \prod_{i=1}^{n} q_{x_i,x_{i-1}}.
 \]
 (a) Show that if \(q \) has a stationary distribution \(\pi \) that satisfies the detailed balance condition, the cycle condition must hold.
 (b) The converse: Suppose that the cycle condition holds. Let \(a \in S \) and set \(\pi_a = c \). For \(b \neq a, b \in S \), let \(x_0 = a, x_2, \ldots, x_k = b \) be a path from \(a \) to \(b \) with \(q_{x_{i-1},x_i} > 0 \) for \(i = 1, 2, \ldots, k \). Define
 \[
 \pi_b = \prod_{i=1}^{k} q_{x_{i-1},x_i}.
 \]
 Show that \(\pi_b \) is well-defined, i.e., is independent of the path chosen. Then conclude that \(\pi \) satisfies the detailed balance condition.