APPM 5600: Homework \#9
 Due in class Monday December 11

$\mathbf{1}$ We saw in class that you can compute quadrature weights in 2 ways: (i) $w_{i}=\int_{a}^{b} \ell_{i}(x) \mathrm{d} x$ and (ii) solve a transposed Vandermonde system. Prove that these methods give you the same answer. Hint: Let \mathbf{V} be the Vandermonde matrix and recall that the columns of \mathbf{V}^{-1} are the coefficients (in the monomial basis) of the Lagrange interpolating polynomials.

2 Some nodes free, others fixed
(a) (Gauss-Radau) Let $x_{0}=-1$. Find nodes x_{1}, x_{2} and x_{3} and weights w_{0}, \ldots, w_{3} such that the quadrature

$$
\sum_{i=0}^{3} w_{i} f\left(x_{i}\right) \approx \int_{-1}^{1} f(x) \mathrm{d} x
$$

integrates polynomials of as high degree as possible exactly.
(b) (Gauss-Lobatto) Let $x_{0}=-1$ and $x_{3}=1$. Find nodes x_{1} and x_{2} and weights w_{0}, \ldots, w_{3} such that the quadrature

$$
\sum_{i=0}^{3} w_{i} f\left(x_{i}\right) \approx \int_{-1}^{1} f(x) \mathrm{d} x
$$

integrates polynomials of as high degree as possible exactly.

3 Use the Peano kernel to show that the corrected trapezoid rule

$$
\int_{0}^{h} f(x) \mathrm{d} x \approx \frac{h}{2}[f(h)+f(0)]+\frac{h^{2}}{12}\left[f^{\prime}(0)-f^{\prime}(h)\right]
$$

has error bounded by

$$
\frac{h^{5}}{720}\left\|f^{(4)}\right\|_{\infty}
$$

4 The Peano kernel error formula plus the integral mean value theorem implies that the error in Simpson's rule (not composite) is

$$
\text { error }=f^{(4)}(\xi) \int_{-h}^{h} K(t) \mathrm{d} t=f^{(4)}(\xi) \frac{h^{5}}{90}
$$

for some $\xi \in[-h, h]$.
(a) Show that the composite Simpson's rule has an asymptotic error formula of the form

$$
\lim _{n \rightarrow \infty} \frac{\text { error }}{h^{4}}=\frac{1}{180}\left[f^{(3)}(b)-f^{(3)}(a)\right]
$$

(b) Compute the Simpson's rule approximation to $\int_{-1}^{1}\left(1+x^{2}\right)^{-1} \mathrm{~d} x$ using $n=128$ (129 points including endpoints). Then, without computing any more function values, use Aitken extrapolation to produce an improved estimate. Compare the two estimates to the true value.

