
APPM 4360/5360 Homework Assignment #7 Solutions Spring 2019

Problem #1 (14 points): Evaluate
∫∞

0

x3 sinkx

(x2 +a2)2
d x, k > 0, a > 0

Solution: Since the integrand is even function,

I =
∫∞

0

x3 sinkx

(x2 +a2)2
d x =

1

2
ImJ =

−i

2
J ,

J =
∫∞

−∞

x3e i kx

(x2 +a2)2
d x.

For k > 0, closing the contour in the upper half-plane and using Jordan lemma, we find

J = 2πi
∑

n:Imzn>0

Res( f (z); zn),

where f (z) = z3e i kz /(z2 +a2)2. Its only s.p. in the upper half-plane is the double pole at z = i a so

J = 2πi
d

d z

z3e i kz

(z + i a)2

∣

∣

∣

∣

∣

z=i a

= 2πi

(

z2(3+ i kz)e i kz

(z + i a)2
−

2z3e i kz

(z + i a)3

)∣

∣

∣

∣

∣

z=i a

=

=
2πi

(2i a)3
(i a)2e−ka (2i a(3−ka)−2i a) =

=
πi

2
e−ka(2−ka).

Thus,

I =
π

4
(2−ka)e−ka .

Problem #2 (14 points): Evaluate
∫∞

0

sinkx

x(x2 +a2)
d x, k > 0, a > 0

Solution: It is convenient to rewrite the integral as follows:

I =
∫∞

0

sinkx

x(x2 +a2)
d x =

1

2

∫∞

−∞

sinkx

x(x2 +a2)
d x =

=
1

2

∫∞

−∞

e i kx −1

2i x(x2 +a2)
d x −

1

2

∫∞

−∞

e−i kx −1

2i x(x2 +a2)
d x.

Changing the integration variable x →−x in the second integral on the right we find

∫∞

−∞

e−i kx −1

x(x2 +a2)
d x =

∫∞

−∞

e i kx −1

x(x2 +a2)
d x,

so

I =
∫∞

−∞

e i kx −1

2i x(x2 +a2)
d x.

Consider the last integral taken over the closed contour C in complex plane, C = [−R,R]∪CR ,

CR = {Re i t ,0 ≤ t ≤π}:
∮

C

e i kz −1

2i z(z2 +a2)
d z =

1



=
∫R

−R

e i kx −1

2i x(x2 +a2)
d x +

∫

CR

e i kz −1

2i z(z2 +a2)
d z.

When we take the limit R →∞, the first integral on the right-hand side becomes I while the second tends to

zero since
∣

∣

∣

∣

∣

∫

CR

e i kz −1

2i z(z2 +a2)
d z

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

π

0

(e i kRe i t −1)Ri e i t d t

2i Re i t (R2e2i t +a2)

∣

∣

∣

∣

∣

≤

≤
∫

π

0

(e−kR sin t +1)d t

2(R2 −a2)
≤

π

R2 −a2
→R→∞ 0.

Thus,

I =
∮

C

e i kz −1

2i z(z2 +a2)
d z =

∮

C
f (z)d z = 2πi Res( f (z); i a) =

=π ·
e−ka −1

i a ·2i a
=

π

2a2

(

1−e−ka
)

.

(Note that z = 0 is a removable singular point here.)

Problem #3 (14 points): Use a rectangular contour with corners at ±R and ±R + iπ/k, with an appropriate

indentation, to show that
∫∞

0

x

sinhkx
d x =

π

4k|k|
for k 6= 0,k real.

Solution: Let CR =C1 +C2 +C3 +C4 be the rectangular contour and Cn , n = 1, . . . ,4 are its sides in

counterclockwise order, C1 = [−R,R]. Since sinhkx = 0 on the contour at x = iπ/k, we must use indentation

around this point. Let k > 0. I.e. consider instead contour CR,ǫ =C1 +C2 + C̃3 +C4 +Cǫ, where

C̃3 = [R + iπ/k,ǫ+ iπ/k]∪ [−ǫ+ iπ/k,−R + iπ/k] and Cǫ = {z = iπ/k +ǫe iθ|sinθ < 0 (traced from right to left) and

let ǫ→ 0. Then, by Cauchy theorem,
∮

CR,ǫ
f (z)d z = 0. Consider

I =
∫∞

−∞

x

sinhkx
d x = lim

R→∞

∫

C1

f (z)d z,

we also have

lim
R→∞

∫

C̃3

f (z)d z =

= lim
R→∞

(
∫

ǫ+iπ/k

R+iπ/k
+

∫−R+iπ/k

−ǫ+iπ/k

)

z

sinhkz
d z =

= lim
R→∞

(
∫

ǫ

R
+

∫−R

−ǫ

)

x + iπ/k

sinhk(x + iπ/k)
d x =

= lim
R→∞

(
∫

ǫ

R
+

∫−R

−ǫ

)

x + iπ/k

sinhkx cosh iπ
d x =

= lim
R→∞

(
∫R

ǫ

+
∫−ǫ

−R

)

x

sinhkx
d x = I ,

where we used that sinhkx is odd in going to the last line. Besides,

lim
R→∞

∫

C2

f (z)d z = lim
R→∞

∫

C4

f (z)d z = 0,

because there sinhkz = sinhk(±R + i y), 0 ≤ y ≤π/k, so limR→∞ sinhk(±R + i y) =±∞. Thus, we get

2I + lim
ǫ→0

∫

Cǫ

f (z)d z = 0,
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where
∫

Cǫ

f (z)d z =
∫−π

0

iπ/k +ǫe iθ

sinhk(iπ/k +ǫe iθ)
ǫi e iθdθ =

=
∫−π

0

iπ/k +ǫe iθ

cosh iπsinhkǫe iθ
ǫi e iθdθ→

→ǫ→0

∫

π

0

iπ

k2ǫe iθ
ǫi e iθdθ =−

π
2

k2
.

Thus, I =π
2/2k2, and

∫∞

0

x

sinhkx
d x =

1

2
I =

π
2

4k2
.

Since sinh(−kx) =−sinhkx, in general, the answer is π

4k|k| .

Problem #4 (14 points): Use the keyhole contour of Figure 4.3.6 to show that, on the principal branch of

xk ,

I (a) =
∫∞

0

xk−1

(x +a)
d x =

π

sinπk
ak−1, 0 < k < 1, a > 0

Solution: Let C be the whole closed contour, C± be the upper/lower sides of the keyhole. Then, in the limit as

R →∞ and ǫ→ 0,
∫

C+

zk−1

(z +a)
d z = I ,

∫

C−

zk−1

(z +a)
d z =−

∫

C+

(ze2πi )k−1

(z +a)
d z =−e2πi (k−1)I ,

|
∫

CR

zk−1

(z +a)
d z| ≤

∫2π

0

Rk−1Rdθ

(R −a)
→ 0,

and
∫

Cǫ

zk−1

(z +a)
d z =−

∫2π

0

ǫ
k−1e i (k−1)θ

(a +ǫe iθ)
iǫe iθdθ→ 0.

Thus,

I (1−e2πi (k−1)) =
∮

C

zk−1

(z +a)
d z = 2πi Res( f (z);−a) =

= 2πi zk−1
∣

∣

∣

z=−a
= 2πi e iπ(k−1)ak−1,

and it follows that

I =
2πi e iπ(k−1)

1−e2πi (k−1)
ak−1 =−

π

sin(π(k −1))
ak−1 =

π

sinπk
ak−1.

Problem #5 (20 points): Verify the Argument principle in Theorem 4.4.1 for the functions:

(a) f (z) = z3+a3

z
, 0 < a < 1

(b) f (z) = sechπz

where the contour is the unit circle: |z| = 1.
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Solution:

(a) f (z) = z3+a3

z
, 0 < a < 1. This function has three zeros z = ae i (π/3+2πn/3), n = 0,1,2, and one pole z = 0 inside

the contour C (the unit circle). Thus, N −P = 3−1 = 2. On the other hand,

1

2πi

∮

C

f ′(z)

f (z)
d z =

1

2πi

∮

C

(

3z2

z3 +a3
−

1

z

)

d z =

=
1

2πi

∮

C

3

z(1+a3/z3)
−1 =

1

2πi

∮

C

3

z

(

1−
a3

z3
+

a6

z6
+ . . .

)

−1 =

= 3−1 = 2.

(b) f (z) = sechπz. This function has poles where coshπz = 0, two of them z =±i /2 inside the contour C (the

unit circle), and no zeros. Thus, N −P = 0−2 =−2. On the other hand,

1

2πi

∮

C

f ′(z)

f (z)
d z =

1

2πi

∮

C

−πsinhπz

coshπz
d z =

=−Res(
πsinhπz

coshπz
; i /2)−Res(

πsinhπz

coshπz
;−i /2) =

=−
πsinhπz

πsinhπz

∣

∣

∣

∣

z=i /2

−
πsinhπz

πsinhπz

∣

∣

∣

∣

z=−i /2

=−1−1 =−2.

Problem #6 (10 points): Use the Argument Principle to show that f (z) = z5 +1 has one zero in the first

quadrant.

Solution: Since f (z) is entire, by Argument Principle,

1

2πi

∮

C

f ′(z)

f (z)
d z = N ,

where N is the number of zeros of f (z) inside C . Let C be the contour in Fig. 4.4.3 in the first quadrant with a

corner at z = 0. Then 1)on [0,R] the argument arg f (z) does not change, 2)on the quarter-circle C ,

∆C arg f (z) =
π

2
·5 =

5π

2
,

and on the interval of imaginary axis [i R,0] we have f (z) = (i y)5 +1 = i y5 +1, so

tanarg f (z) =
Im f (z)

Re f (z)
= y5 > 0,

it changes from +∞ to 0 for large R, and therefore arg f (z) changes from 5π/2 to 2π. Thus,

N =
1

2π
∆tot al arg f (z) =

2π

2π
= 1,

one zero indeed.

Problem #7 (20 points):

(a) Show that ez − (4z2 +1) = 0 has exactly two roots for |z| < 1. Hint: in Rouché’s Theorem use f (z) =−4z2

and g (z) = ez −1, so that when C is the unit circle

| f (z)| = 4 and |g (z)| = |ez −1| ≤ |ez |+1.

(b) Show that the improved estimate |g (z)| ≤ e −1 can be deduced from ez −1 =
∫z

0 ew d w and that this allows

us to establish that ez − (2z +1) = 0, has exactly one root for |z| < 1.
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Solution:

(a) Since on |z| = 1, |g (z)| = |ez −1| ≤ |ez |+1 ≤ e +1 < 4, we have | f (z)| > |g (z)| there. So, by Rouche’s theorem,

f (z) and f (z)+ g (z) have equal number of zeros inside, and this number is 2 for f (z), so also for

f (z)+ g (z) = ez − (4z2 +1).

(b)

|g (z)| ≤
∫|z|

0
e |w |d |w | = e |z|−1 = e −1

on |z| = 1. Since e −1 < 2 = |2z| on the unit circle, Rouche theorem yields the second claim.

Problem #8 (30 points): Find the Fourier transform of the following functions:

(a) e−x2+i ax , a > 0

(b) x
x2+2ax+2a2 , a > 0

Solution:

(a) e−x2+i ax , a > 0

F̂ (k) =
∫∞

−∞
f (x)e−i kx d x =

=
∫∞

−∞
exp(−x2 + i ax)e−i kx d x =

= e−((k−a)/2)2
∫∞

−∞
exp(−(x + i (k −a)/2)2)d x =

=
p
πe−(k−a)2/4,

the last step is formal but can be justified.
∫∞

−∞
exp(−(x + i (k −a)/2)2)d x =

=
∫∞+i (k−a)/2

−∞+i (k−a)/2
exp(−z2)d z.

Consider a rectangular closed contour C with corners at ±R and ±R + i (k −a)/2. Then
∮

C exp(−z2)d z = 0

by analyticity. Then the integrals over the upper and lower sides are equal up to the opposite sign, and the

integrals over left and right sides vanish in the limit as R →∞ (there z =±R + i y , y ∈ [0, (k −a)/2] is finite).

Thus, the result.

(b) x
x2+2ax+2a2 , a > 0

z2 +2az +2a2 = (z +a)2 +a2, so its zeros are z =−a ± i a. Then

F̂ (k) =
∫∞

−∞
f (x)e−i kx d x =

∫∞

−∞

x

x2 +2ax +2a2
e−i kx d x =

(for k > 0 we close the contour in the lower half plane and use Jordan lemma)

=−2πi Res( f (z)e−i kz ; z =−a − i a) =−2πi
(−a − i a)e−ka+i ka

−2i a
=−(1+ i )πe−ka+i ka for k > 0;

and (for k < 0 we close the contour in the upper half plane and use Jordan lemma)

= 2πi Res( f (z)e−i kz ; z =−a + i a) = 2πi
(−a + i a)eka+i ka

2i a
= (−1+ i )πeka+i ka for k < 0.

These results go to different (finite) limits as k → 0. The discontinuity of F̂ (k) at k = 0 is related to the fact

that, for k = 0, the integral F̂ (k) diverges.
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Problem #9 (20 points): Find the Inverse Laplace transform of the following functions:

(a) 1
s2(s+a)

, a > 0

(b) 1
(s+b)(s2+a2)

, a > 0, b > 0

Solution:

f (x) =
1

2πi

∫c+i∞

c−i∞
F̂ (s)e sx d s,

we close the Bromwich contour by a large semicircle in the left half-plane for x > 0. (For x < 0, we close it by a

large semicircle in the right half-plane and get f (x) = 0 since the integrand is analytic inside the contour.)

(a) F̂ (s) = 1
s2(s+a)

, a > 0. The inverse LT is (for x > 0)

f (x) =
1

2πi

∫c+i∞

c−i∞

e sx

s2(s +a)
d s =

= Res

(

e sx

s2(s +a)
; s = 0

)

+Res

(

e sx

s2(s +a)
; s =−a

)

=

=
d

d s

e sx

s +a

∣

∣

∣

∣

s=0

+
e−ax

(−a)2
=

=
x

a
−

1

a2
+

e−ax

a2
.

(b) F̂ (s) = 1
(s+b)(s2+a2)

, a > 0, b > 0. The inverse LT is (for x > 0)

f (x) =
1

2πi

∫c+i∞

c−i∞

e sx

(s +b)(s2 +a2)
d s =

= Res

(

e sx

(s +b)(s2 +a2)
; s =−b

)

+Res

(

e sx

(s +b)(s2 +a2)
; s = i a

)

+Res

(

e sx

(s +b)(s2 +a2)
; s =−i a

)

=

=
e−bx

a2 +b2
+

e i ax

2i a(i a +b)
+

e−i ax

−2i a(−i a +b)
=

e−bx

a2 +b2
+

(b − i a)e i ax − (b + i a)e−i ax

2i a(b2 +a2)
=

=
e−bx

a2 +b2
+

b sin(ax)

a(a2 +b2)
−

cos(ax)

(a2 +b2)
.

Problem #10 (30 points): Given the differential equation for y(t ) and initial conditions

d 2 y

d t 2
+ω

2 y = cos t , y(0) = y ′(0) = 0, ω> 0

(a) Take the Laplace transform of this equation and solve for the Laplace transform of y : Ŷ (s)

(b) Find the inverse Laplace transform of Ŷ (s) when ω 6= 1 thereby finding y(t )

(c) Find the inverse Laplace transform of Ŷ (s) when ω= 1 thereby finding y(t )

In this way one has solved the differential equation.
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Solution:

(a) Let

Ŷ (s) =
∫∞

0
y(t )e−st d t ,

then the LT of
d 2 y

d t 2 is (integrating by parts twice)

∫∞

0
y ′′(t )e−st d t =−y ′(0)− s y(0)+ s2Ŷ (s) = s2Ŷ (s),

by using the initial conditions. The LT of the right-hand side of the equation is

∫∞

0
cos(t )e−st d t =

1

2

∫∞

0
(e(i−s)t +e−(i+s)t )d t =

1

2

(

−
1

i − s
+

1

i + s

)

=
s

s2 +1
.

Thus, the LT of the equation is

(s2 +ω
2)Ŷ (s) =

s

s2 +1

and

Ŷ (s) =
s

(s2 +ω2)(s2 +1)
.

(b) Doing inverse LT using the Bromwich contour as usual. For t > 0,

y(t ) =
1

2πi

∫c+i∞

c−i∞
Ŷ (s)e sx d s =

1

2πi

∫c+i∞

c−i∞

se st

(s2 +1)(s2 +ω2)
d s =

= Res

(

se st

(s2 +1)(s2 +ω2)
; s = i

)

+Res

(

se st

(s2 +1)(s2 +ω2)
; s =−i

)

+

+Res

(

se st

(s2 +1)(s2 +ω2)
; s = iω

)

+Res

(

se st

(s2 +1)(s2 +ω2)
; s =−iω

)

=

=
i e i t

2i (ω2 −1)
+

−i e−i t

−2i (ω2 −1)
+

iωe iωt

2iω(1−ω2)
+

−iωe−iωt

−2iω(1−ω2)
=

cos(t )

ω2 −1
+

cos(ωt )

1−ω2
.

(c) For ω= 1 and again for t > 0,

y(t ) =
1

2πi

∫c+i∞

c−i∞
Ŷ (s)e sx d s =

=
1

2πi

∫c+i∞

c−i∞

se st

(s2 +1)2
d s =

= Res

(

se st

(s2 +1)2
; s = i

)

+Res

(

se st

(s2 +1)2
; s =−i

)

=

=
d

d s

se st

(s + i )2

∣

∣

∣

∣

s=i

+
d

d s

se st

(s − i )2

∣

∣

∣

∣

s=−i

=

=
(1+ i t )e i t

(2i )2
−

2i e i t

(2i )3
+

(1− i t )e−i t

(−2i )2
−
−2i e−i t

(−2i )3
=

=−
cos(t )− t sin(t )

2
+

cos(t )

2
=

t sin(t )

2
.

Note that this is the limit of the result in part b) as ω→ 1, as it should be.
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A good check of correctness of the result in part b) or c) is to verify that the equation and the initial conditions

are satisfied.

Extra-Credit Problem #11 (20 points):

(a) Show that the inverse Laplace transform of F̂ (s) = e−as1/2

s, a > 0, is given by

f (x) = 1−
1

π

∫∞

0

sin(ar 1/2)

r
e−r x dr

Note that the integral converges at r = 0.

(b) Use the definition of the error function integral

erf(x) =
2
p
π

∫x

0
e−r 2

dr

to show that an alternative form for f (x) is

f (x) = 1−erf

(

a

2
p

x

)

Solution:

(a) Here we have branch points s = 0 and s =∞; choose the branch cut on (−∞;0]. Then choose the contour

of integration for the inverse LT going around the cut, see Fig. 4.5.2 in the textbook. We use the setting

and the notations in Example 4.5.3 on pp. 275–276 of the book. Again one shows that

limR→∞
∫

CRA
= limR→∞

∫

CRB
= 0. However, now (on Cǫ, s = ǫe iθ, −π< θ <π)

lim
ǫ→0

1

2πi

∫

Cǫ

e sx e−as1/2

s
d s = lim

ǫ→0

1

2πi

∫−π

π

eǫxe iθ

e−aǫ1/2e iθ/2

ǫe iθ
iǫe iθdθ =

= lim
ǫ→0

1

2π

∫−π

π

dθ =−1.

Also the sum of integrals over the sides of the cut is

1

2πi

(

∫

s=r e iπ

e sx e−as1/2

s
d s +

∫

s=r e−iπ

e sx e−as1/2

s
d s

)

= lim
ǫ→0

1

2πi

(

∫

ǫ

∞

e−r x e−ar 1/2i

r
dr +

∫∞

ǫ

e−r x e−ar 1/2·(−i )

r
dr

)

=

=
1

2πi

∫∞

0

e−r x (e i ar 1/2 −e−i ar 1/2

)

r
dr =

1

π

∫∞

0

sin(ar 1/2)

r
e−r x dr.

Now the first equation on p. 276 implies that

f (x) =−
1

2πi

(

lim
ǫ→0

∫

Cǫ

+
∫

s=r e iπ
+

∫

s=r e−iπ

)

e sx e−as1/2

s
d s = 1−

1

π

∫∞

0

sin(ar 1/2)

r
e−r x dr.

(b)
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