APPM 4360/5360 Homework Assignment #7 Solutions Spring 2019

Problem #1 (14 points): Evaluate

o x3sinkx
f ———dx, k>0,a>0
0o (x2+a?)?

Solution: Since the integrand is even function,

o y3sinkx 1 —i
I=f ———dx=-ImJj=—],
0

(x2 + a?)? 2 2
Je foo xseth
(x2 + a?)? a2)2

For k > 0, closing the contour in the upper half-plane and using Jordan lemma, we find

J=2mi Z Res(f(2); zn),

n:Imz, >0

where f(z) = z°e'%?/ (2% + a?)?. Its only s.p. in the upper half-plane is the double pole at z = ia so
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Thus,
b/
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Problem #2 (14 points): Evaluate

®©  ginkx
f —dx, k>0,a>0
o x(x2+a?)

Solution: It is convenient to rewrite the integral as follows:
®©  sinkx 1 [ sinkx
I:f —dx:—f ———-dx=
0o x(x%2+a? 2 Joo Xx(x% + a?)
1 (> efr—1 1 [ ek
e Y et
2 J-oo 2ix(x* + a?) 2 J-oo 2ix(x* + a?)
Changing the integration variable x — —x in the second integral on the right we find
[es) e—ikx_l 0o eikx_l
[ S
oo X(x2 + a?) —oo X(X2 + a?)
o0 eikx _ 1
I= f T2
—o0 21X(x= + a*)

Consider the last integral taken over the closed contour C in complex plane, C = [-R, R] U Ck,
Cr=1{Re'',0<t<n})

SO

ikz 1
fﬁdz
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R ikx ikz
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=f _—dx+/ ————-dz
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When we take the limit R — oo, the first integral on the right-hand side becomes I while the second tends to

zero since )
eikz _q n(eikRe”_l)Rieitdt
f 1 - f A <
cp 2i2(2% + a?) o 2iRelt(R2e%it + g?)
fn (e—kRsint+1)dt T
= = — R—oo 0.
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Thus,

ikz
I=j§ e—dz ff(z)dz 2niRes(f(z);ia) =
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(Note that z = 0 is a removable singular point here.)

Problem #3 (14 points): Use a rectangular contour with corners at +R and +R + in/ k, with an appropriate
indentation, to show that

foo al dx= 7 for k #0, k real
o sinhkx = 4klk| ’ '

Solution: Let Cg = C; + C + C3 + C4 be the rectangular contour and C,, n =1,...,4 are its sides in
counterclockwise order, C; = [- R, R]. Since sinh kx = 0 on the contour at x = i/ k, we must use indentation
around this point. Let k > 0. L.e. consider instead contour Cr = C; + Cy + Cs + C4 + C., where
Cs=[R+inlk,e+in/klu[—e+in/k,—R+in/k]l and C. = {z=in/k+ee'?|sinf < 0 (traced from right to left) and
let € — 0. Then, by Cauchy theorem, fCR,e f(z2)dz = 0. Consider

I:f - al dx=lim | f(2)dz,

—oo Sinh kx R—ooJc,

we also have
lim | f(2)dz=

R—o00JC,

e+inlk —R+inlk z
= lim (f +[ ) - dz=
R—oo\JRtinik J-e+in/k ) sinhkz
x+inlk
= li d
Rl—r»lgo (f f_ ) sinhk(x+in/k) i
x+inlk
=1 dx =
RI—I»I;o (f f_e )smhkxcoshm o

[
fg +f_RJsinhkx =0

where we used that sinh kx is odd in going to the last line. Besides,

= lim
R—o0

hm f fR)dz = hm f f(2)dz =0,
C
because there sinh kz =sinh k(+R+iy),0< y < n/k, so limg_.sinh k(xR + i y) = +oo. Thus, we get

2I+lim | f(2)dz=0,
e—0Jc,



where

-7 . /k la .
ff(z)dz:f _MIRTEC  ieifag =
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Thus, I = 72/2k?, and

f"o X 1[ ?
x=-1=—.
o sinhkx 2 4k?

Since sinh(—kx) = —sinh kx, in general, the answer is 77 ,ﬁ T

Problem #4 (14 points): Use the keyhole contour of Figure 4.3.6 to show that, on the principal branch of

xk,

[e) xk—l T
I(a)zf dx=——a*1, 0<k<1l,a>0
o (x+a) sinwk

Solution: Let C be the whole closed contour, C, be the upper/lower sides of the keyhole. Then, in the limit as

R—ocoande— 0,
k-1
f dz=1,
c, (z+a)

k-1 2miy k-1
f AP _f (ze”™) dz=—e2mitk-Dp
c. (z+a) ., (z+a)
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= ===
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—
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cr (z+a) (R—a)
and k-1 k-1 ,i(k-1)0
— 21 — 1(K—
V4 € e :
f dz=— f - iee%do —o.
c (z+a) o (a+eel?
Thus,
' k-1
I(1 - e?mik=1)y :f dz =2miRes(f(2);—a) =
c(z+a)
=2mi zF! =2miemk=D gk=1
z=—a ’
and it follows that el
_ 2mietmn k=1 S T P S LA
1 — e2mi(k—1) sin(w(k - 1)) sinmk

Problem #5 (20 points): Verify the Argument principle in Theorem 4.4.1 for the functions:
@ flz)=2%2 0<a<l1
(b) f(z)=sechnz

where the contour is the unit circle: |z| = 1.



Solution:

(@) f(2)= #, 0 < a < 1. This function has three zeros z = ae’™/3+27"/3 5 = 0,1,2, and one pole z = 0 inside
the contour C (the unit circle). Thus, N— P =3 -1 =2. On the other hand,

! 2
1 f(z)d 1 (3z —l)dz:

R Zz=— [
2ni Je f(z) 2niJo\Z3+a3 z
1 3 1 3 a> ab
= —  _1=— ¢ 1-=+ =+, |-1=
2ni Jo z(1 + a3/ 23) 2ni Jc z z3  Z8
=3-1=2.

(b) f(z)=sechnz. This function has poles where coshnz =0, two of them z = +i/2 inside the contour C (the
unit circle), and no zeros. Thus, N— P =0—2 = —2. On the other hand,

1 f(2) 1 —nsinh7z
—_— Z=— —_— Z =
2ni Je f(2) 2ni Jc coshmz
nsinhmz . nsinhmz .
= —Res(———;i/2) —Res(———;—i/2) =
coshnz coshrnz
_ nwsinhzz nsinhmz - 1-1=-2
~ msinhzz|,_;, wsinhmz|,—_j T

Problem #6 (10 points): Use the Argument Principle to show that f(z) = z° + 1 has one zero in the first
quadrant.

Solution: Since f(z) is entire, by Argument Principle,
1 [ f'(2)
2ni Je f(2)

where N is the number of zeros of f(z) inside C. Let C be the contour in Fig. 4.4.3 in the first quadrant with a
corner at z = 0. Then 1)on [0, R] the argument arg f (z) does not change, 2)on the quarter-circle C,

dz=N,

Acargf(z) n5 on
zZ)=—-0=—,
carg 2 2

and on the interval of imaginary axis [iR,0] we have f(z) = (iy)°+1=iy’ +1,s0

Imf(z) 5
Ref(z) =Y

it changes from +oo to 0 for large R, and therefore argf(z) changes from 57/2 to 2. Thus,

tanargf(z) = >0,

1 27
N=—Aprqargf(z) = — =1,
27 27

one zero indeed.

Problem #7 (20 points):
(a) Show that e?—(4z%2+1) =0 has exactly two roots for |z| < 1. Hint: in Rouché’s Theorem use f(z) = —472%

and g(z) = e* — 1, so that when C is the unit circle

|f(z)|=4and |g(z)| =|e*—1| <|e®| +1.

(b) Show that the improved estimate |g(z)| < e— 1 can be deduced from e® -1 = i ¢" dw and that this allows
us to establish that e® — (2z + 1) = 0, has exactly one root for |z| < 1.



Solution:

(@) Sinceon|z|=1,|g(2)|=1e*—1|<|e*|+1<e+1<4,wehave|f(z)|>|g(z)| there. So, by Rouche’s theorem,
f(2z) and f(z) + g(z) have equal number of zeros inside, and this number is 2 for f(z), so also for
f(2)+g(z) = e — (42% +1).

®) |z
Z
Ig(z)lsf eWdlw=ed —1=e—1
0

on |z| = 1. Since e — 1 < 2 = |2z| on the unit circle, Rouche theorem yields the second claim.

Problem #8 (30 points): Find the Fourier transform of the following functions:
(a) e+ 550

b) 5w—5L=—,a>0

x2+2ax+2a?
Solution:

(a) e—x2+iax,a>0
ﬁ(k):f fxe *dyx =

o .
= f exp(—x% +iax)e ¥ dx =

—00

= e_((k—a)/z)zf exp(—(x+i(k— a)/Z)Z)dx =

2
= e k-aPr4

the last step is formal but can be justified.

foo exp(—(x+i(k—a)/2)*)dx =

oco+i(k—a)l2

:f exp(—-z°)dz.

—oco+i(k—a)/2
Consider a rectangular closed contour C with corners at +R and +R + i(k — a)/2. Then fc exp(—zz)dz =0
by analyticity. Then the integrals over the upper and lower sides are equal up to the opposite sign, and the
integrals over left and right sides vanish in the limit as R — oo (there z=+R+1iy, y € [0, (k — a)/2] is finite).
Thus, the result.

b) 5~=5=,a>0

x2+2ax+2a?’

Z2+2az+2a? = (z+ a)® + a?, so its zeros are z = —a + ia. Then

F(k) :foo f(x)e‘ikxdx:[

oo X2+ 2ax+2a?

(o9}
X .
e iy =

(for k > 0 we close the contour in the lower half plane and use Jordan lemma)

: —ka+ika
; —-a-ia)e ,
:—ZniRes(f(z)e_lkz;z:—a—ia):—Zni( 2) = —(1+ i)me katika for k> 0;
-2ia

and (for k < 0 we close the contour in the upper half plane and use Jordan lemma)

ka+ika

=2niRes(f(z)e %% z=—a+ia) =2ni = (-1+p)mek+ike  fork<o.

(—a+ia)e
2ia

These results go to different (finite) limits as k — 0. The discontinuity of F (k) at k = 0 is related to the fact
that, for k = 0, the integral F(k) diverges.



Problem #9 (20 points): Find the Inverse Laplace transform of the following functions:
(a) m, a>0

(b) a>0,b>0

1

Solution: .
c+100

flx)= 2L F(s)e**ds,

Tl Je—ioo
we close the Bromwich contour by a large semicircle in the left half-plane for x > 0. (For x < 0, we close it by a
large semicircle in the right half-plane and get f(x) = 0 since the integrand is analytic inside the contour.)

(@ F(s)= m, a > 0. The inverse LT is (for x > 0)

c+ioco PR

f(x)zL ———ds=

278 Je—ico S2(s+a)

esx esx
:Res(—);s:0)+Res(— s=-—al|=

s2(s+a S2s+a)
d esx e—ax
= — 4+ — =
dss+alsy (—a)?
x 1 N e
Ta a®  a?
(b) F(s)= Wlshaz)' a>0, b>0. The inverse LT is (for x > 0)
1 c+ioco esx
X)= — ———ds=
f& 270 Je—ico (S+D)($2+a?)
esx SX esx
=Res| ———————;s=-b|+Res| ————;s=ia|+Res| ———;s=—ial| =
(s+Db)(s2+a? ) ((s + b)(s% + a?) ) ((s + b)(s% + a?)
~ e—bx .\ eiax . e—iax ~ e—bx +(b—ia)ei“x—(b+ia)e‘i“x_
T @?+b? 2iatia+b) —2ia(-ia+b) a?®+b? 2ia(b? + a?) a
e bx bsin(ax) cos(ax)

= + - .
a’+b* a@+b*> (a®>+Db?

Problem #10 (30 points): Given the differential equation for y(#) and initial conditions

@+wzy=cost y(0)=y'0)=0, w>0
dtz M )

(a) Take the Laplace transform of this equation and solve for the Laplace transform of y: Y (s)
(b) Find the inverse Laplace transform of V(s) when w # 1 thereby finding y(¢)
(c) Find the inverse Laplace transform of ¥ (s) when w = 1 thereby finding y()

In this way one has solved the differential equation.



Solution:

(@) Let -
Yf(s):f y(te *'dt,
0

then the LT of % is (integrating by parts twice)
©© A A
f V(e Stdt=—y'0) - sy(0) + sV (s) = 2 ¥ (s),
0

by using the initial conditions. The LT of the right-hand side of the equation is

° st L[ Gos9r | —Gi+s)t 1 1 1 $
cos(t)e Stdt=— (e +e dt=—|-——+- = .
0 2 Jo 2\ i-s i+s) s?+1

Thus, the LT of the equation is
(> +w?) Y (s) =

$2+1

and
. s

Y(§)= ——F—75—.
(s) (2 +w?)(s2+1)
(b) Doing inverse LT using the Bromwich contour as usual. For ¢ > 0,
1 c+ioo 1 c+ioco Sest
=— Y(s)et¥ds=— ——————-ds =
yi) 2m’fc_ioo (s) 270 Je—ico (82 +1)(8% + w?)

St

—Res( se” 's—i)+Res( se 1S = i)+
B (2+1)(2+w?)’ " (S2+1)(2+w?) "

st sest
=jiw|+Res| ————;s=—iw|=
) ((32 +1)(s? +w?) )

+R ( se
es| ————s
(s2 +1)(s%2 +w?)

ielt _l'e—lt iwelwt _iwe—lwt

2iw?-1) =2i(w?-1) 2iw(l-w?) =2iw(l-w?
cos(t) cos(wt)
w?-1 1-w?"

(c) For w =1 and again for ¢ > 0,
1 ctioo sx
)= — Y(s)etds =
y() 2ﬂi[c—ioo ()

1 c+ioco SeSt

= — — ds=
270 Jo—ico (82 +1)2

sest st
=Res|———=;s=i|+Res| ———=;s=—-i| =
((32+1)2 ) ((32+1)2 )

_d se’ d se’t B
T As G| ds =02 s
_(+ine’t  2ie’t L= ine”'t  —2ie”’ _
(20)2 (2i)3 (—20)? (—20)3
B _cos(t) — tsin(1) N cos(1) _ tsin(t)
2 2 2

Note that this is the limit of the result in part b) as w — 1, as it should be.



A good check of correctness of the result in part b) or c) is to verify that the equation and the initial conditions
are satisfied.

Extra-Credit Problem #11 (20 points):
(a) Show that the inverse Laplace transform of F(s) = e s, a>0,is given by
1 [ sin(ar!/?
flx)= 1——[ ¥e_rxdr
T Jo r
Note that the integral converges at r = 0.

(b) Use the definition of the error function integral

erf(x):%fo e’

to show that an alternative form for f(x) is

f)=1- erf(z\/_)

Solution:

(a) Here we have branch points s = 0 and s = oo; choose the branch cut on (—oo;0]. Then choose the contour
of integration for the inverse LT going around the cut, see Fig. 4.5.2 in the textbook. We use the setting
and the notations in Example 4.5.3 on pp. 275-276 of the book. Again one shows that

limp_eo fc =limp_oo fc = 0. However, now (on C,, s=ee'?, -1 <0 < m)
sx —ast? 7 exe® —gell2gior
.1 ee a1 et e T
im— —ds=lim— ———iece’’dO =
e—02miJe, S e—027i Jn celt

=lim — f ao =-
e—027
Also the sum of integrals over the sides of the cut is

1 esxe—as”2 esxe—as”2 1 € e—rxe—ar”zi 00 e—rxe—ar”z-(—i)
— f —ds+f —ds|=lim— f —dr+f —dr| =
27Tl s=reim S s=re-in S €—0 27[1 [ele} r € r

_ 212 12 .
1 © o rx(elur — g tar ) 1 °°sm(ar1/2) B
rx
——e "dr
0

dr=—

27i Jo r T r

Now the first equation on p. 276 implies that

flx)= ——(llmf f f ) ete ds 1——[00 Sm(ml/z) e "*dr.
e=0Jc, s=reim s=re”im

(b)




