\documentclass[11pt]{article} \usepackage{amsmath,amssymb,palatino,fancyhdr,fullpage,graphicx} %\usepackage{epsfig,psfrag} \newcommand{\hide}[1]{} \pagestyle{fancyplain} % \usepackage{tweaklist} % \renewcommand{\enumhook} % { % \setlength{\topsep}{0pt} % \setlength{\itemsep}{1pt} % \setlength{\parskip}{0pt} % \setlength{\parsep}{0pt} % } % \renewcommand{\itemhook} % { % \setlength{\topsep}{0pt} % \setlength{\itemsep}{1pt} % \setlength{\parskip}{0pt} % \setlength{\parsep}{0pt} % } \usepackage[T1]{fontenc} %\usepackage{ae, aecompl}v % wider font spacing \usepackage[usenames,dvipsnames]{color} \usepackage[bookmarks,urlcolor=blue,citecolor=blue,linkcolor=blue, pagecolor=blue,colorlinks,hyperfigures]{hyperref} \newcommand{\hreff}[1]{\href{http://#1}{http://#1}} \newcommand{\R}{\mathbb{R}} \newcommand{\xv}{\mathbf{x}} \newcommand{\e}{\epsilon} \def\Xint#1{\mathchoice {\XXint\displaystyle\textstyle{#1}}% {\XXint\textstyle\scriptstyle{#1}}% {\XXint\scriptstyle\scriptscriptstyle{#1}}% {\XXint\scriptscriptstyle\scriptscriptstyle{#1}}% \!\int} \def\XXint#1#2#3{{\setbox0=\hbox{$#1{#2#3}{\int}$} \vcenter{\hbox{$#2#3$}}\kern-.5\wd0}} \def\ddashint{\Xint=} \def\dashint{\Xint-} \newcommand\smallO[1]{ \mathchoice {% \displaystyle \mathop{}\mathopen{}{\scriptstyle\mathcal{O}}\mathopen{}\left(#1\right) } {% \textstyle \mathop{}\mathopen{}{\scriptstyle\mathcal{O}}\mathopen{}\left(#1\right) } {% \scriptstyle \mathop{}\mathopen{}{\scriptscriptstyle\mathcal{O}}\mathopen{}\left(#1\right) } {% \scriptscriptstyle \mathop{}\mathopen{}{o}\mathopen{}\left(#1\right) } } % document parameters \setlength{\textheight}{9in} \setlength{\parindent}{0pt} \setlength{\parskip}{8pt} \setlength{\parindent}{0.in} \setlength{\parskip}{0.1in} \setlength{\topmargin}{-0.4in} \setlength{\headsep}{0.4in} \begin{document} \lhead{\large{\textbf{APPM 5470, Methods of Applied Mathematics: Partial Differential Equations and Integral Equations, HW 7, due 12/8}}} \rhead{\textit{Fall 2017}} %\lfoot{} \cfoot{} \rfoot{} \vspace{0.25in} \textbf{Book Problems:} Chapter 9: 3, 6, 11 \textbf{Additional Problems:} \begin{enumerate} \item [A1)] This problem will use methods of potential theory to find a boundary integral equation representation of the solution to the Dirichlet problem \begin{equation*} \begin{split} \Delta u(\mathbf{x}) &= 0, \quad \mathbf{x} \in \Omega \subset \R^3 \\ u(\mathbf{x}) &= f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega , \end{split} \end{equation*} where $\Omega$ is bounded and its boundary $\partial \Omega$ is smooth. Recall the fundamental solution in $\R^3$: $\Phi(\mathbf{x},\mathbf{y}) = (4\pi |\mathbf{x}-\mathbf{y}|)^{-1}$. \begin{enumerate} \item Show that for any $\mu \in C(\partial \Omega)$, the double layer potential \begin{equation} \label{eq:1} u(\mathbf{x}) = \int_{\partial \Omega} \left [ \frac{\partial}{\partial n_y} \Phi(\mathbf{x},\mathbf{y}) \right ] \mu(\mathbf{y})\, \mathrm{d}S_y \end{equation} is harmonic in $\R^3 \setminus \partial \Omega$. \item Prove \begin{equation*} \int_{\partial \Omega} \left [ \frac{\partial}{\partial n_y} \Phi(\mathbf{x},\mathbf{y}) \right ] \mathrm{d}S_y = \begin{cases} -1 , \quad \mathbf{x} \in \Omega, \\ -\frac{1}{2}, \quad \mathbf{x} \in \partial \Omega, \\ 0, \quad \mathbf{x} \in \overline{\Omega}^c = \R^3 \setminus \overline{\Omega} . \end{cases} \end{equation*} \item For the double layer potential in Eq.~\eqref{eq:1} to solve the Dirichlet problem, we require \begin{equation*} \lim_{\substack{\mathbf{z} \to \mathbf{x} \in \partial \Omega \\ \mathbf{z} \in \Omega}} u(\mathbf{z}) = f(\mathbf{x}) . \end{equation*} Assuming this and using the relations you proved in (b), show that the density $\mu$ in \eqref{eq:1} satisfies the singular boundary integral equation \begin{equation*} \int_{\partial \Omega} \left [ \frac{\partial}{\partial n_y} \Phi(\mathbf{x},\mathbf{y}) \right ] \mu(\mathbf{y})\, \mathrm{d}S_y - \frac{1}{2} \mu(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega . \end{equation*} Integral equations like this one are at the heart of modern boundary integral numerical methods. \end{enumerate} \item [A2)] In this problem, you will show that the Fourier transform of a constant is a delta distribution. The general strategy is to find the Fourier transform of $f_L(x) = H(L-|x|) = \begin{cases} 1, \quad |x| < L \\ 0, \quad \mathrm{else} \end{cases}$ and then show that $\lim_{L \to \infty} \hat{f}_L(k)$ is a delta distribution. Recall the Fourier transform \begin{equation} \label{eq:2} \hat{f}(k) = \int_{\R} f(x) e^{ikx}\, \mathrm{d}x . \end{equation} \begin{enumerate} \item Compute $\hat{f}_L(k)$. \item Show that $\lim_{R \to \infty} \int_{-R}^R \hat{f}_L(k) \, \mathrm{d} k = 2 \pi$. \textit{Hint: some basic complex variables can be handy here.} \item Now prove that $\hat{f}_L(k) \to 2\pi \delta(k)$ in the sense of distributions. \end{enumerate} \item [A3)] \begin{enumerate} \item Explain mathematically the concept of finite or infinite signal propagation speed for the heat $u_t = k u_{xx}$ and wave $u_{tt} - c^2 u_{xx} = 0$ equations. Assume compactly supported initial conditions on $\R$ and justify your answer explicitly by using the solution to each problem. \item Consider the ``initial value problem'' for Laplace's equation \begin{equation*} \begin{split} u_{xx} + u_{yy} &= 0, \quad x \in \R, \quad y > 0, \\ u(x,0) &= f(x), \quad \lim_{y \to \infty} u(x,y) = 0, \quad x \in \R , \end{split} \end{equation*} where $y$ plays the role of ``time''. Assume $f$ is smooth and compactly supported. \begin{enumerate} \item Solve this boundary value problem. \item Does the solution exhibit finite or infinite propagation speed? Justify your answer mathematically and explicitly as in part (a). \end{enumerate} \end{enumerate} \item [A4)] Let $\Omega = \{(x,y) \in \R^2 ~ | ~ x \in (0,\pi), ~ y > 0 \}$. \begin{enumerate} \item Solve \begin{equation} \label{eq:8} \begin{split} u_{xx} + u_{yy} &= 0, \quad x \in \Omega, \\ u(x,0) &= V, \quad \lim_{y \to \infty} u(x,y) = 0, \quad x \in (0,\pi), \\ u(0,y) &= u(\pi,y) = 0, \quad y > 0 , \end{split} \end{equation} using separation of variables. \item Why did we require $\lim_{y \to \infty} u(x,y) = 0$? \item Show that the solution can be written as \begin{equation} \label{eq:9} u(x,y) = \frac{4 V}{\pi} \textrm{Im} \sum_{n ~\textrm{odd}} \frac{Z^n}{n} , \quad Z = e^{i(x + i y)} . \end{equation} \item Now sum the infinite series (the Taylor expansion $\log (1+Z) = Z - \frac{1}{2} Z^2 + \frac{1}{3} Z^3 - \frac{1}{4} Z^4 + \cdots$ may be helpful). \item Manipulate the summed series and recal $\textrm{Im} \log z = \arg z$ on the principal branch of $\log z$ to show that the solution in closed form is \begin{equation} \label{eq:10} u(x,y) = \frac{2 V}{\pi} \tan^{-1} \left ( \frac{\sin x}{\sinh y} \right ) . \end{equation} \end{enumerate} \end{enumerate} \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: