APPM 4360/5360 Homework Assignment #6 Solutions Spring 2019

Problem #1 (30 points): Evaluate the integral

I= Lf f(2)dz,
2mi Jc

where C is the unit circle centered at the origin, for the following f(z):

3
(a) f(z)=z— 0<ax<l
Zt+at’

log(z—b)

2 )

(b) f(z)=

(c) tan(2z)

0<a<1, b>1,principal branch
Z2+a P P

Solution:

(a) There are four singular points inside C, the roots zj, j =1,2,3,4, of z*+ a* = 0, and no finite s.p. outside of
C. So I =Res(f(2);00). Since
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z 1 1 4, an 1

z) = = = — E —alz = — —
1@ zt+a*t  z(l+a*lz%) ano( ) z

? 4
5 e

we have I = Res(f(z);00) = 1. Alternatively, the residue at each of the four simple poles is
Res(f(2); zj) = z?/(4z?) = 1/4, so adding them gives 1 again.

(b) This f has a branch point at z = b, make the cut on [b, +00) and, for the principal branch, when z = x + i0,
x> b, i.e. on the top side of the cut, we have log(z — b) =log|x — b|. Then z = +ia are two simple poles
inside C. Since we are integrating over the unit circle,

log(ia—h)+log(—ia—b)_ 1 1 (-b+ia) 1

I =Res(f;ia)+Res(f;—ia)= = E(arg(—bﬂa}—arg(—b—ia)) =

0 —_—
2ia —2ia 2ia g(—b—ia)

1 arctan(a/b)
= 22 (arctan(—a/b) + 7 — arctan(a/b) —n1) = ——.
a a

(c) The singular points are those where cos(2z) =0, i.e. z =z =n/4+nk/2, k€ Z. Two such points, z = +7n/4
are inside C. Using that

tan(22) sin(2(zx + u)) sin(2zy) cos(2u) cos(2u)
an(2z) = = = - =
cos(2(zx +u)) —sin(2zg)sin(2u) sin(2u)

_1-@wP2+... o (0-QCwf2+.)0+Cwk6+..) 1 L2u,

 2u—-(Qwd/6+... 2u C2u 37
we get

1 1
I=Res(f;n/4)+Res(f;—n/4) = 373 =-1.
Or, shorter, using residue formula,
sin(2z) sin(2z)

I=Res(f;m/4)+Res(f;—n/4) = ————— it —
o : ¢ ) 2¢08'(22) | j=p/a  2€08'(22) | j=—n/4



Problem #2 (10 points): Let C be the unit circle centered at the origin. Evaluate the integral

I= Lf f(2)dz,
2ni Jc

for the following f(z) in two ways: (i) enclosing the singular points inside C and (ii) enclosing the singular
points outside C (by including the point at infinity). Show that you get the same result in both cases.

z2 +1
(z )— a’<1.
f —-a?
Solution:
1+a? 1+ a?

f@=1+ 2a(z—a) 2az+a)

which has simple poles at z = +a.
(i) Since these poles are inside C,

1+ a?

I=Res(f;a)+Res(f;—a)=(1-1) =0.

(ii) Since f is analytic outside C, I = Res(f;00) = 0. Both results are the same, as expected since f is
rational.

Problem #3 (10 points): Let f(z) be analytic outside a circle Cg enclosing the origin.

1 1 dat
- = 1/H)—,
2mi fcR [adz Znifcp rarm t?

where C, is a circle of radius 1/R enclosing the origin. For R — oo conclude that the integral can be
computed to be Res(f(1/1)/t%;0).
(b) Suppose f(z) has the convergent Laurent expansion

(@) Show that

-1 .
fla= ) Ajz.

j==oo

Show that the integral above equals A_;. (See also Eq. (4.1.11).)

Solution:

(@) Letz=1/t, then dz=—dt/t?, and contour Cg is a clockwise oriented contour around z = oo or ¢ = 0. If we
change orientation, we get

1 1 dt
— dz=— 1/t)—,
271 Jey f@dz 2mi fcp rarm t

where C, is a counterclockwise oriented circle of radius 1/R enclosing the origin. For R — co we use
analiticity of f(1/¢) inside the circle to conclude that the integral can be computed to be Res(f(1/1)/t?;0).
(b)

farn = Z A,(l/t)f—ZA nt",

]:—oo n=1
)
wdt
2mi 2o

—j{ f(l/t) i -n



Problem #4 (15 points): Determine the type of singular point each of the following functions have at
infinity.

(a) Z,f—:a, a >0, n > m positive integers.
(b) log(z? +a?), a>0
(c) cosz

Solution:
Zﬂ ., . . —
(@ 2w, a>0, n>mpositive integers: let z=1/t, then

z" tm

zZm+a  t"(1+at™)’

which has a pole of order n — m at ¢ = 0 of strength 1, so pole of order n — m and strength 1 at z = co.
(b) log(z2 +a?), a>0:
log(z* + a®) = 2logz +log(1 + a*/z%),
so z = oo is a logarithmic branch point.

(©) cosz:cosz =Y (—1)"z*"/(2n)! so z = oo is essential singularity.

Problem #5 (20 points): Assume that f and g are analytic outside a circle Cr of radius R centered at the origin
and
lim f(z)=C; and lim zg(z)=Cy,

|z|—o0 |z|]—o0

where C; and C, are constants. Show that

1
— ¢ g@efPdz=Cre".
211 Jog

Solution: Since f and g are analytic outside Cg,

1
i b g(2)e/® dz = Res(g(z)e/?;00).

To find the residue, we deduce the following:

e Since f(z) — Cy as z — oo, e/ @ — 1,

« Since zg(z) — Cy as z — oo, g(z) — 0 as z — oo and g(z) ef® 0 as z — oo since e©! is finite.
e If h(z) — 0 as z — oo, then Res(h(z);00) =lim,_, zh(z). Thus,

Res(g(a)e! ¥;00) = lim zg(z)e/ ™ = Cye®,

as we wanted to show.

Problem #6 (15 points): Evaluate the following real integral:

00 2
f _ Y _ax,  p>0
0

(x2 +[32)2 ’

00 2
dx, B> 0. Since integrand is an even function,

o0 x? 1 [® x2
fo o2t o 4= Ef_oo o2 s o 4

3

Solution: f() m



Since integrand is a rational function with degree of denominator = degree of numerator +2, we close the
contour by large semicircle in the upper half-plane and use residues:

lfoox—zd = iRes(f(2);iP) =
2) oo iy o T ROV RO =

a2
T dz(z+ip)?

z=ip
—m'( 2z B 2272 )
B (z+iB)? (z+iP)3

z=ip

Problem #7 (40 points): Evaluate the following real integrals:

& coskx
® f—oo (2 + a2) (x2 + b?) dx,a>0,b>0,k>0

o0 k
(b) f C(:ls al dx, k real
o Xx*+1

Solution:

e coskx '
@ f_oo (x2 + a2)(x2 + b2) dx,a>0,b>0, k>0. Consider

eikz
/= ?gcf(z)dz _fi; Zrd@in Y

C=[-R,RIU{Re® 0<0<m

Then, by Jordan lemma, I = Re(limg_.o J). Since

J = 27i(Res(f(2); ia) + Res(f(2); ib)) = 27i e &P albe ¥ — ae )
= Z); Z); = . . = )

2ia(b?-a?) 2ib(a®-b?) ab(b? - a?)
so also . b

n(be % — ge™")
I=1I(ab) =

(a,D) ab(b? - a?)
This is precisely true if a # b, but special case a = b can be obtained e.g. as the limit limj,_. ; of the last
formulai.e.

. m(be ka_ ge~kb)  (a+eF_ge ka1 —kr+..) w(l+ka)e ke
I(a,a) = lim =xlim = .
b—a ab(b?-a?) 1—0 ala+tRa+1 2ad

oo k
(b) f CZS xdx, k real
o Xx*+1

® coskx 1 [ coskx
I= dx=—- ——dx
0o x*+1 2J 00 x4 +1

eikzdz
]—fcf(z)dz—fcm,

C=[-R,RIU{Re?,0<0<m}

Consider



Then, by Jordan lemma, I = Re(limg_. //2) =limgr_, J/2. Since

J=2mi (Res(f(z);ei”/4) +Res(f(2); e3i”’4)) =

eik(1+i)/\/§ eik(—1+i)/\/§
=27i =

4(61'7[/4)3 + 4(631'7[/4)3

ime—kIV2 (eik/fz e—ik/\/i)

2 Gainid t ginn

_ _M (ein/4eik/\/§
2
_Nge—kiV2
_ %(1 + ) (cos(k/V2) +sin(k/V2)) =

rekIV2

+ iem/4e—zk/\/§) —

(cos(k/\/i) + sin(k/\/i)) =

k k
:ne_k/ﬁcos( n) :ne_k/‘/isin(—+%),

VZ o4 NG
SO
I= ne‘k/‘/icos(k/\/i— m/4)
= > =
ne’k/‘@sin(k/\/i+n/4)
= 5 .
Problem #8 (20 points): Show that

® coshax 1 a

f x=—sec(—), lal < .
o coshmx 2 2

Use a rectangular contour with corners at +R and +R + i.

Solution: Let Cgr = C; + C, + C3 + Cy4 be the rectangular contour and C,, n =1,...,4 are its sides in
counterclockwise order, C; = [-R, R]. Then

I f"o coshax
—oo COShx

coshax

im dx = lim fdx.
R—ooJc, coshmx R—ooJc,

Inside Cg, the integrand f (z) is analytic except points where coshnz =0, i.e. z=1i/2. Thus
f f(2)dz=2miRes(f(2);i/2) =
Cr

. coshaz
=27i =2cos(al2).

z=il2

nsinhmz
On the other hand,
lim | f(z)dz= lim / f(2)dz =0,
R—ooJc,

—00 C2



because |a| < 7. Besides,

_R h .
lim [ f@dz=tim [ cosRe@t
—ooJc, R—ooJg coshm(x+i)

I R coshaxcoshia+sinhaxsinhia d
= lim - X =
R—ooJR coshzmxcoshin

i R coshax
=cosa lim dx=1cosa.

R—ooJ_g coshmx

Thus,

f(2)dz =2cos(al2) = I+ Icosa = 2Icos*(al2),
Cr

so I =sec(a/2) and

®© coshax I 1
dx=—=—sec(al2).
o coshmx 2 2

Problem #9 (20 points): Consider a rectangular contour with corners at b+ iR and b+ 1+ iR. Use this contour
to show that ,
1 b+iR paz 1
lim — N Z= ’
R—o0 271 Jp—ir SINMZ n(l+e 9

where0< b <1, |Imal <.

Solution: Let Cgr = C; + C, + C3 + C4 be the clockwise rectangular contour and C,,, n=1,...,4 are its sides in
clockwise order, C; = [b—iR,b+iR]. Then

1 b+iR L 1
I=lim — - dz=lim — | f(2)dz,
R—oco 27i Jp—ir SINMZ R—o0 271 Jg,
where f(z) = Sifld; —. Inside Cg, the integrand f (z) is analytic except points where sinzz =0, i.e. only z = 1.
Thus
f(2)dz=—-2miRes(f(z);1) =
Cr
az
=-2ni ———| =2ie”
TCOSTZ | ,—1
On the other hand,

lim fl2)dz= lim[ f(2)dz =0,
R—o0Jc,

R—o0JC,
because |Ima| < 7. Besides,

—-R ea(b+1+iy)

lim z)dz = lim ————idy=
R—o00 Cgf( ) R—ooJR sinn(b+l+iy) Y
R ea(b+iy)
=—e lim f - - idy=e“l.
R—ooJ_pgsinnm(b+iy)cosn
Thus,
a 2ie? e%
Q+eHI= - = —
27 T
_ 1
and I'= 7oy

Problem #10 (20 points): Use a sector contour with radius R as in figure 4.2.6, centered at the origin with angle

0505%”,t0ﬁnd,f0ra>0,
f"o dx b4
o xX°+a® 5atsinZ’

5




Solution: Contour C=C,+ Cgr+Cr;0onCy, z=x,0<x<R;on Cg, z= Re'?, 0<0< Z.on Cp, z = re?™i/s,

0<r<R.Then
©  dx
I:\[0 m_ llmf f(Z)dZ

R ,2mil5
e dr .
lim f(z2)dz=- lim — = —e2mil5
R—ooJc, R—ooJo r’+a
2n/5 RdO
(z)dz sf — —h0,
| Cr ! | o Ri—a5 T
and, since the only s.p. inside C is z = ae'™'?,
f(2)dz =2miRes(f(2); ae'™'®) = _2mi
c B ’ T s ghetinl5
Thus,
i 2mi
2mi/5y _
Id-e )= 5a4etin/s’
SO '
_ 2mi 3
- 5a4e4in/5(1 _ eZni/S) -
2mi T

- 5a4(2isin(n/5)) - 5a*sin(r/5)°

Extra-Credit Problem #11 (10 points): Consider a rectangular contour Cr with corners at (+R,0) and (xR, a).

Show that
_ 2 R 2 R —(x+i )2
jg ezdz=f exdx—f e Y dx+ Jp=0,
Cr -R “R

4Ry ¢ —(R+ip?
]R:f e idy—f e Yidy
0 0

Show lunR_,Oo Jr=0, whereupon we have [ e —OeHia)? gy = 15 e dx= v/, and consequently, deduce that
[ e cos2ax dx=/Te *.

(e 9]

where

Solution: Let Cg = C; + C, + C3 + C, be the counterclockwise rectangular contour and C,, n=1,...,4 are its
sides in counterclockwise order, C; = [-R, +R]. Then

—Z2 R _x2
e “dz= e " dx,
o -R
-z ¢ —Rriy?
e dz=| e Y idy,
[0} 0
-z R _eriap R eviap
e “dz= e dx=—-| e dx,
G R -R
-z O CReiy?; ¢ _CReiy?;
e“dz=| e Widy=-1] e Y idy,
C4 a 0

and, by Cauchy theorem, fCR e~ dz = 0, which shows the first point. We have

a R . o a R .2
|Jrl < fo e” B idy| +| fo e TR gy =

2 a 2 a 2
=e R (f ey dy+/ ey dy) —R—000,
0 0

7



which proves that [0 e WA gy = o e~ dx = /7. Finally,

o —(x+ia)? @ [T —x —2iax
e dx=e e e dx=
—00 —0o0

a? > —x?
=e e " cos2axdx,
—00

the last equality because the integral of imaginary (odd) part is zero.




