
APPM 4360/5360 Homework Assignment #6 Solutions Spring 2019

Problem #1 (30 points): Evaluate the integral

I =
1

2πi

∮

C
f (z)d z,

where C is the unit circle centered at the origin, for the following f (z):

(a) f (z) =
z3

z4 +a4
, 0 < a < 1

(b) f (z) =
log(z −b)

z2 +a2
, 0 < a < 1, b > 1, principal branch

(c) tan(2z)

Solution:

(a) There are four singular points inside C , the roots z j , j = 1,2,3,4, of z4 +a4 = 0, and no finite s.p. outside of

C . So I = Res( f (z);∞). Since

f (z) =
z3

z4 +a4
=

1

z(1+a4/z4)
=

1

z

∞
∑

n=0

(−a4/z4)n =
1

z
−

a4

z5
+ . . . ,

we have I = Res( f (z);∞) = 1. Alternatively, the residue at each of the four simple poles is

Res( f (z); z j ) = z3
j
/(4z3

j
) = 1/4, so adding them gives 1 again.

(b) This f has a branch point at z = b, make the cut on [b,+∞) and, for the principal branch, when z = x + i 0,

x > b, i.e. on the top side of the cut, we have log(z −b) = log |x −b|. Then z =±i a are two simple poles

inside C . Since we are integrating over the unit circle,

I = Res( f ; i a)+Res( f ;−i a) =
log(i a −b)

2i a
+

log(−i a −b)

−2i a
=

1

2i a
log

(−b + i a)

(−b − i a)
=

1

2a
(arg(−b+i a)−arg(−b−i a)) =

=
1

2a
(arctan(−a/b)+π−arctan(a/b)−π) =−

arctan(a/b)

a
.

(c) The singular points are those where cos(2z) = 0, i.e. z = zk =π/4+πk/2, k ∈Z. Two such points, z =±π/4

are inside C . Using that

tan(2z) =
sin(2(zk +u))

cos(2(zk +u))
=

sin(2zk )cos(2u)

−sin(2zk )sin(2u)
=−

cos(2u)

sin(2u)
=

=−
1− (2u)2/2+ . . .

2u − (2u)3/6+ . . .
=−

(1− (2u)2/2+ . . . )(1+ (2u)2/6+ . . . )

2u
=−

1

2u
+

2u

3
+ . . . ,

we get

I = Res( f ;π/4)+Res( f ;−π/4) =−
1

2
−

1

2
=−1.

Or, shorter, using residue formula,

I = Res( f ;π/4)+Res( f ;−π/4) =
sin(2z)

2cos′(2z)

∣

∣

∣

∣

z=π/4

+
sin(2z)

2cos′(2z)

∣

∣

∣

∣

z=−π/4

=

=−
1

2
−

1

2
=−1.
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Problem #2 (10 points): Let C be the unit circle centered at the origin. Evaluate the integral

I =
1

2πi

∮

C
f (z)d z,

for the following f (z) in two ways: (i) enclosing the singular points inside C and (ii) enclosing the singular

points outside C (by including the point at infinity). Show that you get the same result in both cases.

f (z) =
z2 +1

z2 −a2
, a2 < 1.

Solution:

f (z) = 1+
1+a2

2a(z −a)
−

1+a2

2a(z +a)
,

which has simple poles at z =±a.

(i) Since these poles are inside C ,

I = Res( f ; a)+Res( f ;−a) = (1−1)
1+a2

2a
= 0.

(ii) Since f is analytic outside C , I = Res( f ;∞) = 0. Both results are the same, as expected since f is

rational.

Problem #3 (10 points): Let f (z) be analytic outside a circle CR enclosing the origin.

(a) Show that
1

2πi

∮

CR

f (z)d z =
1

2πi

∮

Cρ

f (1/t )
d t

t 2
,

where Cρ is a circle of radius 1/R enclosing the origin. For R →∞ conclude that the integral can be

computed to be Res( f (1/t )/t 2;0).

(b) Suppose f (z) has the convergent Laurent expansion

f (z) =
−1
∑

j=−∞
A j z j .

Show that the integral above equals A−1. (See also Eq. (4.1.11).)

Solution:

(a) Let z = 1/t , then d z =−d t/t 2, and contour CR is a clockwise oriented contour around z =∞ or t = 0. If we

change orientation, we get
1

2πi

∮

CR

f (z)d z =
1

2πi

∮

Cρ

f (1/t )
d t

t 2
,

where Cρ is a counterclockwise oriented circle of radius 1/R enclosing the origin. For R →∞ we use

analiticity of f (1/t ) inside the circle to conclude that the integral can be computed to be Res( f (1/t )/t 2;0).

(b)

f (1/t ) =
−1
∑

j=−∞
A j (1/t ) j =

∞
∑

n=1

A−n t n ,

so
1

2πi

∮

Cρ

f (1/t )
d t

t 2
=

∞
∑

n=1

A−n ·
1

2πi

∮

Cρ

t n d t

t 2
= A−1.
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Problem #4 (15 points): Determine the type of singular point each of the following functions have at

infinity.

(a) zn

zm+a
, a > 0, n > m positive integers.

(b) log(z2 +a2), a > 0

(c) cos z

Solution:

(a) zn

zm+a
, a > 0, n > m positive integers: let z = 1/t , then

zn

zm +a
=

t m

t n(1+at m)
,

which has a pole of order n −m at t = 0 of strength 1, so pole of order n −m and strength 1 at z =∞.

(b) log(z2 +a2), a > 0:

log(z2 +a2) = 2log z + log(1+a2/z2),

so z =∞ is a logarithmic branch point.

(c) cos z: cos z =
∑∞

n=0(−1)n z2n/(2n)! so z =∞ is essential singularity.

Problem #5 (20 points): Assume that f and g are analytic outside a circle CR of radius R centered at the origin

and

lim
|z|→∞

f (z) =C1 and lim
|z|→∞

zg (z) =C2,

where C1 and C2 are constants. Show that

1

2πi

∮

CR

g (z)e f (z) d z =C2eC1 .

Solution: Since f and g are analytic outside CR ,

1

2πi

∮

CR

g (z)e f (z) d z = Res(g (z)e f (z);∞).

To find the residue, we deduce the following:

• Since f (z) →C1 as z →∞, e f (z) → eC1 .

• Since zg (z) →C2 as z →∞, g (z) → 0 as z →∞ and g (z)e f (z) → 0 as z →∞ since eC1 is finite.

• If h(z) → 0 as z →∞, then Res(h(z);∞) = limz→∞ zh(z). Thus,

Res(g (z)e f (z);∞) = lim
z→∞

zg (z)e f (z) =C2eC1 ,

as we wanted to show.

Problem #6 (15 points): Evaluate the following real integral:

∫∞

0

x2

(x2 +β2)2
d x, β> 0

Solution:

∫∞

0

x2

(x2 +β2)2
d x, β> 0. Since integrand is an even function,

∫∞

0

x2

(x2 +β2)2
d x =

1

2

∫∞

−∞

x2

(x2 +β2)2
d x.
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Since integrand is a rational function with degree of denominator = degree of numerator +2, we close the

contour by large semicircle in the upper half-plane and use residues:

1

2

∫∞

−∞

x2

(x2 +β2)2
d x =πi Res( f (z); iβ) =

=πi
d

d z

z2

(z + iβ)2

∣

∣

∣

∣

z=iβ

=

=πi

(

2z

(z + iβ)2
−

2z2

(z + iβ)3

)
∣

∣

∣

∣

z=iβ

=

=πi

(

1

2iβ
+

−β2

4iβ3

)

=
π

4β
.

Problem #7 (40 points): Evaluate the following real integrals:

(a)

∫∞

−∞

coskx

(x2 +a2)(x2 +b2)
d x, a > 0, b > 0, k > 0

(b)

∫∞

0

coskx

x4 +1
d x, k real

Solution:

(a)

∫∞

−∞

coskx

(x2 +a2)(x2 +b2)
d x, a > 0, b > 0, k > 0. Consider

J =
∮

C
f (z)d z =

∮

C

e i kz

(z2 +a2)(z2 +b2)
d z,

C = [−R,R]∪ {Re iθ,0 ≤ θ ≤π}

Then, by Jordan lemma, I = Re(limR→∞ J ). Since

J = 2πi (Res( f (z); i a)+Res( f (z); i b)) = 2πi

(

e−ka

2i a(b2 −a2)
+

e−kb

2i b(a2 −b2)

)

=
π(be−ka −ae−kb)

ab(b2 −a2)
,

so also

I = I (a,b) =
π(be−ka −ae−kb)

ab(b2 −a2)
.

This is precisely true if a 6= b, but special case a = b can be obtained e.g. as the limit limb→a of the last

formula i.e.

I (a, a) = lim
b→a

π(be−ka −ae−kb)

ab(b2 −a2)
=π lim

t→0

(a + t )e−ka −ae−ka(1−kt + . . . )

a(a + t )t (2a + t )
=

π(1+ka)e−ka

2a3
.

(b)

∫∞

0

coskx

x4 +1
d x, k real

I =
∫∞

0

coskx

x4 +1
d x =

1

2

∫∞

−∞

coskx

x4 +1
d x

Consider

J =
∮

C
f (z)d z =

∮

C

e i kz d z

z4 +1
,

C = [−R,R]∪ {Re iθ,0 ≤ θ ≤π}
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Then, by Jordan lemma, I = Re(limR→∞ J/2) = limR→∞ J/2. Since

J = 2πi
(

Res( f (z);e iπ/4)+Res( f (z);e3iπ/4)
)

=

= 2πi

(

e i k(1+i )/
p

2

4(e iπ/4)3
+

e i k(−1+i )/
p

2

4(e3iπ/4)3

)

=

=
iπe−k/

p
2

2

(

e i k/
p

2

e3iπ/4
+

e−i k/
p

2

e iπ/4

)

=

=−
iπe−k/

p
2

2

(

e iπ/4e i k/
p

2 + i e iπ/4e−i k/
p

2
)

=

=
(1− i )πe−k/

p
2

2
p

2
(1+ i )(cos(k/

p
2)+ sin(k/

p
2)) =

=
πe−k/

p
2

p
2

(cos(k/
p

2)+ sin(k/
p

2)) =

=πe−k/
p

2 cos

(

k
p

2
−
π

4

)

=πe−k/
p

2 sin

(

k
p

2
+
π

4

)

,

so

I =
πe−k/

p
2 cos(k/

p
2−π/4)

2
=

=
πe−k/

p
2 sin(k/

p
2+π/4)

2
.

Problem #8 (20 points): Show that

∫∞

0

cosh ax

coshπx
d x =

1

2
sec

( a

2

)

, |a| <π.

Use a rectangular contour with corners at ±R and ±R + i .

Solution: Let CR =C1 +C2 +C3 +C4 be the rectangular contour and Cn , n = 1, . . . ,4 are its sides in

counterclockwise order, C1 = [−R,R]. Then

I =
∫∞

−∞

cosh ax

coshπx
d x =

= lim
R→∞

∫

C1

cosh ax

coshπx
d x = lim

R→∞

∫

C1

f (x)d x.

Inside CR , the integrand f (z) is analytic except points where coshπz = 0, i.e. z = i /2. Thus

∮

CR

f (z)d z = 2πi Res( f (z); i /2) =

= 2πi
cosh az

πsinhπz

∣

∣

∣

∣

z=i /2

= 2cos(a/2).

On the other hand,

lim
R→∞

∫

C2

f (z)d z = lim
R→∞

∫

C4

f (z)d z = 0,
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because |a| <π. Besides,

lim
R→∞

∫

C3

f (z)d z = lim
R→∞

∫−R

R

cosh a(x + i )

coshπ(x + i )
d x =

= lim
R→∞

∫−R

R

cosh ax cosh i a + sinh ax sinh i a

coshπx cosh iπ
d x =

= cos a lim
R→∞

∫R

−R

cosh ax

coshπx
d x = I cos a.

Thus,
∮

CR

f (z)d z = 2cos(a/2) = I + I cos a = 2I cos2(a/2),

so I = sec(a/2) and
∫∞

0

cosh ax

coshπx
d x =

I

2
=

1

2
sec(a/2).

Problem #9 (20 points): Consider a rectangular contour with corners at b ± i R and b +1± i R. Use this contour

to show that

lim
R→∞

1

2πi

∫b+i R

b−i R

eaz

sinπz
d z =

1

π(1+e−a)
,

where 0 < b < 1, |Ima| <π.

Solution: Let CR =C1 +C2 +C3 +C4 be the clockwise rectangular contour and Cn , n = 1, . . . ,4 are its sides in

clockwise order, C1 = [b − i R,b + i R]. Then

I = lim
R→∞

1

2πi

∫b+i R

b−i R

eaz

sinπz
d z = lim

R→∞

1

2πi

∫

C1

f (z)d z,

where f (z) = eaz

sinπz
. Inside CR , the integrand f (z) is analytic except points where sinπz = 0, i.e. only z = 1.

Thus
∮

CR

f (z)d z =−2πi Res( f (z);1) =

=−2πi
eaz

πcosπz

∣

∣

∣

∣

z=1

= 2i ea .

On the other hand,

lim
R→∞

∫

C2

f (z)d z = lim
R→∞

∫

C4

f (z)d z = 0,

because |Ima| <π. Besides,

lim
R→∞

∫

C3

f (z)d z = lim
R→∞

∫−R

R

ea(b+1+i y)

sinπ(b +1+ i y)
i d y =

=−ea lim
R→∞

∫R

−R

ea(b+i y)

sinπ(b + i y)cosπ
i d y = ea I .

Thus,

(1+ea)I =
2i ea

2πi
=

ea

π

and I = 1
π(1+e−a )

.

Problem #10 (20 points): Use a sector contour with radius R as in figure 4.2.6, centered at the origin with angle

0 ≤ θ ≤ 2π
5

, to find, for a > 0,
∫∞

0

d x

x5 +a5
=

π

5a4 sin π
5

.
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Solution: Contour C =Cx +CR +CL ; on Cx , z = x, 0 ≤ x ≤ R; on CR , z = Re iθ, 0 ≤ θ ≤ 2π
5

; on CL , z = r e2πi /5,

0 ≤ r ≤ R. Then

I =
∫∞

0

d x

x5 +a5
= lim

R→∞

∫

Cx

f (z)d z,

lim
R→∞

∫

CL

f (z)d z =− lim
R→∞

∫R

0

e2πi /5dr

r 5 +a5
=−e2πi /5I ,

|
∫

CR

f (z)d z| ≤
∫2π/5

0

Rdθ

R5 −a5
→R→∞ 0,

and, since the only s.p. inside C is z = ae iπ/5,

∮

C
f (z)d z = 2πi Res( f (z); ae iπ/5) =

2πi

5a4e4iπ/5
.

Thus,

I (1−e2πi /5) =
2πi

5a4e4iπ/5
,

so

I =
2πi

5a4e4iπ/5(1−e2πi /5)
=

=
2πi

5a4(2i sin(π/5))
=

π

5a4 sin(π/5)
.

Extra-Credit Problem #11 (10 points): Consider a rectangular contour CR with corners at (±R,0) and (±R, a).

Show that
∮

CR

e−z2

d z =
∫R

−R
e−x2

d x −
∫R

−R
e−(x+i a)2

d x + JR = 0,

where

JR =
∫a

0
e−(R+i y)2

i d y −
∫a

0
e−(−R+i y)2

i d y

Show limR→∞ JR = 0, whereupon we have
∫∞
−∞ e−(x+i a)2

d x =
∫∞
−∞ e−x2

d x =
p
π, and consequently, deduce that

∫∞
−∞ e−x2

cos2ax d x =
p
πe−a2

.

Solution: Let CR =C1 +C2 +C3 +C4 be the counterclockwise rectangular contour and Cn , n = 1, . . . ,4 are its

sides in counterclockwise order, C1 = [−R,+R]. Then

∫

C1

e−z2

d z =
∫R

−R
e−x2

d x,

∫

C2

e−z2

d z =
∫a

0
e−(R+i y)2

i d y,

∫

C3

e−z2

d z =
∫−R

R
e−(x+i a)2

d x =−
∫R

−R
e−(x+i a)2

d x,

∫

C4

e−z2

d z =
∫0

a
e−(−R+i y)2

i d y =−
∫a

0
e−(−R+i y)2

i d y,

and, by Cauchy theorem,
∮

CR
e−z2

d z = 0, which shows the first point. We have

|JR | ≤ |
∫a

0
e−(R+i y)2

i d y |+ |
∫a

0
e−(−R+i y)2

i d y | =

= e−R2

(
∫a

0
e y2

d y +
∫a

0
e y2

d y

)

→R→∞ 0,
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which proves that
∫∞
−∞ e−(x+i a)2

d x =
∫∞
−∞ e−x2

d x =
p
π. Finally,

∫∞

−∞
e−(x+i a)2

d x = ea2
∫∞

−∞
e−x2

e−2i ax d x =

= ea2
∫∞

−∞
e−x2

cos2ax d x,

the last equality because the integral of imaginary (odd) part is zero.
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