NA 5610. 7

6. ASSIGNMENT 6
Due Wednesday, March 14

Gregory Beylkin, ECOT 323

(1) (Note: you will need the code of this assignment for another HW).
Implement trapezoidal rule to solve the initial value problem

y =1(t,y)
where y = (y1,2)", £(t,y) = (fi(t,¥), /2(¢,y))" and y(0) = yo. Use repeated Richardson extrapo-
lation to improve the results.
Using your code to solve
2y 1y + (t2 —1)y=0,
with the initial conditions y(0) = 0 and y’(0) = 1/2 on the interval [0, 37]. Use repeated Richard-
son extrapolation to compute y(37) with 10 accurate digits. Hint: For constructing the first order
system, determine the first few terms of the Taylor expansion of the solution y(t) = ag + ait +
art® + azt’ + O (*), and then substitute y(t) = tu(t) to obtain the first order system for u. The
exact solution is Jj (), the Bessel function of the first kind of order 1.
(2) Show that the two step method

1 h
Yor1 = §(Yn + Ynfl) + Z [4f(xn+1 ) YnJrl) - f(xm Yn) + 3f(xnfl y¥Yn—1 )]

is second order.

(3) Determine order of the multistep method
Yot1 = 4YH - 3ynfl - 2hf(xnfl ) Ynfl)a

and illustrate with an example that the method is unstable.

(4) Show that the multistep method
Yoi3 T A2Yp2 T a1Yp 1 T a0y, =
h[be(tn-i-Z; yn—l—Z) + bl f(tn-i-] 7Yn+1) + b()f(tnv Yn)]

is fourth order only if ap +a; = 8 and a; = —9. Deduce that this method cannot be both fourth
order and convergent. (This is problem 2.6 in Iserles).
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mine the three coefficients a, b, ¢. One finds, however, that the formula'holds
also for f(x) = x?*; hence one must go to f(x) = x*to get .the error estlma.te.
Generally speaking, one can expect similar experiences in problems which

have a certain symmetry.

Example 7.2.3
We know the values of a function at the equidistant points x, = X, + nh.

Suppose that for a certain » we have that f, < f_,,_1 'imd fi < f,,f,.' Determine
an approximate value for both the minimum point £ and the minimum value

of the function fin [X,_;, X,4+1]- . o
Approximate f using a second-degree polynomial f,

Fo) = a+ blx — x,) + felx — x)%

where we have (from Taylor’s formula and Example 7.1.7),

a=f

fro— .n 1 '—fn‘-l,
b=tu=""

£ , —2- -n-—
C:f/"/:fn+1 h{n+f 1,

>

fl(x):b‘l‘c(X—-x,,):O for x:)?;:x"_-.

b b,

f@=a- Tt ge(7) —a7%

Thus, having chosen £ to be the interpolating polynomial which agrees with

fat x = Xx,_;, X, X,41, We get the result
i = LB for
min f(x) < a — Ry

~X=Xx,— —
x =X . p

where

C =

a=fn

As an error estimate for the minimum value of f we get:
|min f(x) — min f(x)| < max | f(x) =[G, * € [Xa-1s Xna]

— n+ —zfn+fn~ .
b:fn+12hfn—l’ f 1 hz 1

Using the remainder term for interpolation (Theorem 4.3.3), we have, if

[ f"(x)| < M (see Problem 3 at the end of this section),
- 1 N _ _ _ : h
max | f(x) —f(x)| < - M max|(x — x, B(x — x)(x — x, + M|

__ME
= om)"

M can be estimated by using third differences; see Theorem 7.1.4.

(1.2.7)
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Example 7.2.4

Estimate f9, when f_,, f_,, fo, fi, f» are known (x, = X, + nh). The
function f is judged to be so regular that a local fit with a second-degree
polynomial (in [x_,, x,]) is reasonable, but the values of the function are con-
taminated by random errors; hence the method of least squares is motivated.
Approximate f(x) by f(x) = 313, ¢,0,(x), where g,(x) = (x — x,)’. Then
" = fs = ¢,. Use the scalar product

2
(f,8) = X fig:
From the normal equations of Eq. (4.2.6), we get:

(@0 91)co + (91, @1)es + (92 91 = (f, ¢1).
Since (po, 91) = (9,3, 1) = 0, we have

o= (o) _ 2"
(¢1, ¢l) . ﬁ h2i?

i£7)

flo ¢ = Z(fz _f—z)l(;\l}‘l (fl _f—l). (7.2.8)

Later in this chapter we shall see other approximate formulas for numerical
differentiation.

7.2.2. Repeated Richardson Extrapolation

In many calculations what one would really like to know is the limiting
value of a certain quantity as the step length approaches zero. Let Fi (h) de-
note the value of the quantity obtained with step length 4. The work to com-
pute F(#) often increases sharply as 4 —s 0. In addition, the effects of round-off
errors often set a practical bound for how small 4 can be chosen.

_ Often, one has some knowledge of how the truncation error F (h) — F(0)
behaves when & — 0. If

Fh) = ay + a,h* 4+ O(), (h— 0,r > p),
where a, = F(0) is the quantity we are trying to compute and a, is unknown,
then a, and g, can be estimated if we compute F for two step lengths, 4 and
gh, (¢ > 1):

F(h) = ay + a,h? + O(h),
F(qh) = ay + a,(gh)y + O(h"),
from which we get

FO) = ay = £) + EO =L@ 4 ogy), (7.29)

i

b
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This process is called Richardson extrapolation, or the deferred approach to
the limit. An example of this was mentioned in Chap. 1—the application of
the above process to the trapezoidal rule for numerical integration (where
p=2,9=2)

Suppose that, as in Theorem 7.1.5, one knows the form of a more com-
plete expansion of F(#) in powers of 4. Then one can, even if the values of the
coefficients in the expansion are unknown, repeat the use of Richardson ex-
trapolation in a way to be described below. This process is, in many numerical
problems—especially in the numerical treatment of integrals and differential
equations—the simplest way to get results which have negligible truncation error,
The application of this process becomes especially simple when the step
lengths form a geometric series,

hO’ q_lhm q—Zho, .
THEOREM 7.2.1
Suppose that

F(h) = a, + ah? + ai”* + ash” + ..., (71.2.10)

where py, < p, <p3 <...,and set

Fy(h) = F(h), -

Then F(h) has an expansion of the form
F(h) = a, + ah? + al b7 + ..
Proof. (By induction.) From Eq. (7.2.10), the theorem holds for n =1

Suppose the above expansion holds for n = k. Then, using Eq. (7.2.11), we

see that F,, (%) has an expansion containing the same powers of h as the ex
pansion for F,(h). In the expansion for F,..(h), the coeflicient of A7« is

(k) (k) o px
a a
a4 2k 7 qu = g{¥ — g = 0.

Thus the theorem holds for #n = k -+ 1, and the proof is complete.

Hence if an expansion of the form of Eq. (7.2.10) is known, the above
theorem gives a way to compute increasingly better estimates of a,. The
first term in the expression for the truncation error in F.(h) is al®h?, so we_

get truncation errors which begin with increasingly higher powers of #, as n
increases (recall p; < p, <p; <...).

A moment’s reflection on Eq. (7.2.11) will convince the reader that (using
the notation of the theorem) Fj. (%) is determined by the k + 1 values F, ),
Fy(gh), . .., F,(g*h). One gets (with some slight changes in notation) the fol-
lowing algorithm:

Feni(l) = F) + BB TR 7211

EC. 7.2.2 REPEATED RICHARDSON EXTRAPOLATION 271

ork=1,2,...,m,

Api-1— 4
A= Ay pe m,k—1 m-1,k=1
e = Ay S (7.2.12)

The value 4,, ;.. is accepted as an estimate of a, when | Ay — Ay g 2| is less

than the permissible error. The computations can be conveniently set up in
the scheme:

A A A

qm_l qm___l F‘:“l‘

N
A

Ao Ay (1.2.13)
Azo A21\ D -A22

/ :
Aao A31 \A“ A33

Thus one extrapolates until two values in the same column agree to the desired
accuracy. In most situations, the magnitude of the difference between two
values in the same column gives (if 4 is sufficiently small), with a large margin

a bound for the truncation error in the lower of the two values. One cannot,
however, get a guaranteed error bound in all situations. ’

. The most common special case is to take ¢ = 2 when one has an expan-
sion of the form

F(h) = ay + a,h* + a,h* + a,hs + . . ., (1.2.14)

where clearly p, = 2k. Then in (7.2.13), the headings of the columns become
A A A

T 13 g3 when p,=2%, q=2. (7.2.15)

.We now illustrate the application of the above in numerical differentiation.
sing Theorem 7.1.5, one has an expansion of the form

f(a+h)2—l;f(a_h)=f/(a)_._alhz+a2h4_'_“_'

Example 7.2.5

Compute f'(3) for f(x) = In (x) using values for In (x) tak i
place table. Choose #, = 0.8. Then, () taken from a six

4,100 +h)2—;lln(3 — b

with k= 277p,,

]
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EMS

A A A lizati . . .

, A 4 A ;;era I%a;mn th:at has proved a@vantageous in the numerical solution of

| di erential equations (see the Bulirsch-Stoer method, Sec. 8.3.1) is to fit a

r A omso ratlopal function W%th almost the same degree in the numerator and the de-

2,087 nominator to the given values of F.

04 Ao =0.335330 Ary = 0.333243 Moreover, it is not at all necessary that the parameter be a step size. For
500 +6 instance, the same idea can be used whe i ,

‘ X n one has some theoretical knowl-

0.2 Az =0.333830 Azy = 0333330 Azz = 0.333336 inder in an infinite seri th
s . o eig; 1;)efr h:;)\; the rer:?ulilder in an mﬁl'nte series depends asymptotically on the
01 Ao 0333455 o 0333330 Ay = 0333330 n erms. Aitken extrapolation (see Sec. 3.2.3) is in this sense an ap-

plication of the same basic idea.

Finally, the idea of a deferred approach to the limit is sometimes used in
the expcrlmental sciences—for example, when some quantity is to be mea-
sured in complete vacuum (difficult or expensive to produce). It can then be
more practical to measure the quantity for several different values of the
pressure. Expansions analogous to Eq. (7.2.10) can sometimes be motivated

ll:y thedkinetic theory of gases, and the deferred approach to the limit can
e used. '

Using the stopping criterion of the algorithm, one accepts A,, = 0.333330,
where |Ry| < }-107S. Since f'(x) = l/x, the correct answer is f'(3) =
0.333333. The actual error is thus —3-10-5. Here, round-off error is the
dominant source of error, something more typical of numerical differentia-
tion than of Richardson extrapolation.

One can show (for p, = 2k, q = 2) that if the values in the first column—i.e.,
Ago, Ao, Ay, - . —are afflicted with errors whose magnitudes are less than €,
then the errors caused later in the extrapolation scheme have magnitudes which
nowhere exceed 2¢. The reader is recommended to verify this, at least for k =
1, 2, 3. In the example above, the error in 4, is at most 10-9/2h << 5-1078,
which gives | R,| < 1075. When choosing the precision to be retained in the
values in the first column, one should consider what precision one hopes to
attain in the final result of the extrapolations. In the example, the truncation
error in 4,, is—if the value is understood as an approximation to the deriva-
tive—about 0.002, but it would be wasteful to round 4,, to three decimals.
The extrapolation process also uses the information contained in the digits
which are afflicted with truncation error.

REVIEW QUESTION

ine the ‘theory behind repeated Richardson extrapolation and explain its use
in numerical differentiation.

PROBLEMS

Simpson’s rule is occasionally written in the form:

b
f SOy dx~ 2y 44U + 2B 1 1y,

The idea of a deferred approach to the limit (Richardson extrapolation)
is much more general than the theorem and the algorithm given above. It
is, for instance, not necessary that the step sizes form a geometric progression.
Note that if p; = j-p in Eq. (7.2.10), then the partial sums of the expansion
are polynomial functions of A?. If k + 1 values F(qoh), F(q,h), ..., F(g:h)
are known, then by Theorem 4.3.2 a kth-degree interpolation polynomial is
determined uniquely by the conditions:

Q((qlh)p) = F(qzh)7 = 0’ 13 25 LI ) k'

One can prove that Q(0) — F(0) = O(h**V?), h — 0.

There are many other variations. It is essentially a problem of estimating
the coefficients in some theoretically motivated expression for F(h), when
some values of F are numerically known. The program for the extrapolation
in these generalizations is more complicated, though quite practicable. One

where U=}f} + 13 +'... + foets E=fo + fo+ ...+ fua, for n even.
Show that this agrees with the formula given in Example 7.2.2.

(a) Derive a formula

2h
(2h)~172 JD X712 f(x) dx =~ (Ao f(0) + A1 f(h) + Af(2h))
wl.xich is exact when f(x) is any second-degree polynomial.
(b) Give an asymptotically correct error term.
In Example 7.2.3 it is asserted that

1
max 6I(x Xy h)(x—x,,)(x—x,,—l—h)|=243l‘,2, fx — x,| < A

Prove this.
4. {f.}is a sequence of function values at equidistant points. Set
&n = afpsr + bfy + cfyy.

K

)




