APPM 5600: Homework \#6
 Due in class Wednesday November 1

1 We saw a discrete orthogonal Fourier basis in class, as the columns of the Vandermonde matrix for the equispaced trigonometric interpolation problem. Denote these orthogonal basis vectors by \boldsymbol{v}^{k} with $k=0, \ldots, 2 n$; the $j^{\text {th }}$ entry of the $k^{\text {th }}$ vector is

$$
\boldsymbol{v}_{j}^{k}=e^{\frac{2 \pi \mathrm{i} j k}{2 n+1}}
$$

where $\mathrm{i}=\sqrt{-1}$.
A 'circulant' matrix of $\operatorname{size}(2 n+1) \times(2 n+1)$ has the form

$$
\mathbf{C}=\left[\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & \cdots & a_{2 n} \\
a_{2 n} & a_{0} & a_{1} & \cdots & a_{2 n-1} \\
a_{2 n-1} & a_{2 n} & a_{0} & & a_{2 n-2} \\
\vdots & & \ddots & \ddots & \vdots \\
a_{1} & a_{2} & \cdots & a_{2 n} & a_{0}
\end{array}\right] .
$$

Let \mathbf{S} be the matrix that shifts the index of a vector by 1, i.e. for any vector \boldsymbol{w}, the $j^{\text {th }}$ entry of $\mathbf{S} \boldsymbol{w}$ is

$$
(\mathbf{S} \boldsymbol{w})_{j}=w_{j+1}, \quad j=0, \cdots, 2 n-1 ; \quad(\mathbf{S} \boldsymbol{w})_{2 n}=\boldsymbol{w}_{0}
$$

(a) Show that any circulant matrix can be written as a polynomial of the \mathbf{S} matrix.
(b) Prove that the vectors \boldsymbol{v}^{k} are all eigenvectors of the circulant matrix. What are the eigenvalues?

2 Atkinson Chapter 3, problem 41.
3 Atkinson Chapter 4, problem 5.
4 Atkinson Chapter 4, problem 9.

