APPM 4360/5360 Homework Assignment #5 Solutions Spring 2019

Problem #1 (15 points): Consider f;,(z)g,(z) in adomain D where: |g,(2)| <= M; M constant in D and f,(z)
converges to zero uniformly for all z € D. Prove f;,(z) g,(z) converges to zero uniformly for all z € D.

Solution: By definition of uniform convergence, for any € > 0 there is a number N(e) such that, for all ze€ D and
all n> N(e), | f(2)| < €. Foragiven e > 0, lete; = ¢/ M. Then, for all ze D and all n > N(e) = N(e;), we have

0=1fn(2)8n(2) = fn(2)lgn(2)| = M| fn(2)| < Me1 =e.

This proves the statement.

Problem #2 (15 points): Find the Taylor series expansion of the following functions:
@ z2/1+2%, |zl <1;
(b) coshkz, k>0 constant;

ikz?

(c) ze'™*; k>0 constant.

Solution:

(@) z%/(1+2%), |z| < 1; using geometric series,

Z 2 i 3 Ozo: 3n+2
=z (=22)" =Y (=",
1+ Zg n=0 n=0
(b) coshkz, k>0 constant;
o] (kz)zn
coshkz= Z —_—
= 2n)
(c) zeikzz; k > 0 constant. , -
. 0 (ikz2)" o0 NN 2nt
zelke = 5 Z ( ) Z ,

n=0 n! n=0 n!

wherei"=1forn=4m,i"=iforn=4m+1,i"=-1forn=4m+2andi"=-iforn=4m+3,all me Z.

Problem #3 (20 points): Given
&8} .
F(z) =f f(ne'#dt,
—00

where f (1) = e™!, t <0,and f(¢) = e" %!, t >0; &; >0, j = 1,2 constants. Find the region of the complex plane

K

where F(z) is analytic; explain. Do the same if f(f) = te™ tz, x > 0; explain. F(z) is referred to as the Fourier

transform of f ().

Solution: Let h(z,t) = f(#)e'?!. Then, for both cases mentioned,
1) h(z, t) is entire function of z for all ¢;
2) h(z, t) is continuous function of ¢ for all z;
since the integral over ¢ is improper, one has to verify condition 3) of the theorem about analyticity of such
integrals: whether there is a function G(f) such that |h(z, 1)| = G(t) and [ G(f)dt <oco. Let z=x+1i}.
Then

\h(z, O = f(Dlle| = fDIle’ TP = f(t)]e .

Then, for the first given f(¢), one gets
t<0: |h(z, 1) =@Vt



t>0: |h(z, 1) =e @V

so [0 |h(z, t)|dt is finite if and only if @1 — y > 0 and a; + y > 0. Thus, F(z) is analytic in the horizontal strip
—ar<Imz<a;.

For the second given f (), [ |h(z, t)|d¢ is finite for all z, therefore F(z) is analytic for all finite z in this case.
Formally, one can consider a region y > yp in C. Then

|h(z, 1) < G(t) = e X e V!,

and f_ozo G(f)dt < oo, so in this region one directly applies the theorem. This is true for any finite yy so F(z) is
analytic for all finite z.

Problem #4 (20 points): Let
(0]
F(z) =f f(ne *dt,
0

where f () is continuous function, | f(#)| < Ae” %!, A> 0, a > 0 constants. Find the region of the complex plane
where F(z) is analytic; explain. F(z) is referred to as the Laplace transform of f(t).

Solution: Let g(z, 1) = f () e ?! then g(z,t) is analytic in z in C and continuous in ¢ for all ¢ > 0. Also we have
(z=x+1iy)
1g(z, D =1f(D)]le”*| < Ae* e,

and fgo Ae~+DT gy i finite for x > —a. Therefore F(z) is analytic in the (infinite) vertical strip Rez > —a, by the
same theorem as used in the previous problem.

Problem #5 (20 points): Let f(z) = 1/(z% + @?), a > 0. Find the Laurent expansion in the regions

@ |z|l>a
b) lzl<a
Solution:
f(Z)———L( ! - !
T z224+a?2 2ial\z-ia z+ia)’
@ |zl >a
1 1 1
f(z)_Zi(xz(l—ia/z_1+i(x/z)_
1 &) (—ia)"
=2iazz( Zn zn ):
n=0
_ i (_1)7)1(2“)2}11—2
- = Z2m :
(b) |zl<a
f(z)_l( Lo, 1 )_
222 \1+izla 1-izla)
1 & _in s A\
Z_ZZ(( iz) +(zz) ):
2a° ;5o\ an a”

_ 1 & (_1)mzzm



Problem #6 (15 points): Given the function

f(Z)=(

find the Laurent series of f(z) in the regions

(@ |zl<1
b) 1<|z|<2
(©) lz|>2

Solution: Using partial fractions, we see that

2z

2z

z—i)(z+2)’

_ 2/5+4il5 N 8/5—-4i/5

(z—0)(z+2)

(@) For|z| <1,

z—1i z+2

.215+41/5 N 4/5-2i/5

f@=i—7

(2

(b) Forl<|z| <2,

z 1+2z/2
n;o(_(_” +( 2) )Z ‘

2/5+4i/5 4/5-2il5

n

(-2)"

&= 0= " T2
C(20+20) 2 0" (2@ & (-1
_( 5 ),;ozn+1+( 5 )Zo(z
(c) For|z|>2,
f(ay = 252119 2(4/5—21’/5)( ] )
0=l Z 1+2/z
21420)\ & i"  2(4/5-2i/5) X
) 5 )r;ozn+l+ < nX::o
20-\ 2, i
:( : )n;o(z o2

zh

Problem #7 (45 points): Discuss all singularities of the following functions including the type of singularity:
removable, pole - include order, essential, branch point, cluster, ..., that each of these functions has in the finite
z-plane. For parts a,b,c,d, if the functions have a Laurent series around any of the singularities find the first two

nonzero terms.

(a) secz
b) =5
(©

logz
z(z-2)
(d)
(e)

sin(1/z2)
coth(1/z)



Solution:

(a) secz =1/cosz. Since cos z is an entire function, the only singular points are those where cos(z) =0,

(b)

(c)

(d)

(e

i.e.z=zr=m/2+nk, k € Z. Around such a point, let z = zi + (z — zx) = zx + u, then

1 1 1
cos(z) cos(zp+u)  sin(zg)sin(u)

_=DF  =pn*
Cosin(u)  u—-ud/6+...

(-D*  (=Dfu
= + +

6

where ... correspond to positive powers of u = z — z;. greater than 1. L.e. z =z = n/2 + mk is simple pole
with strength (—1)F.
ﬁ. Since the denominator is an entire function, the only singular points are those where e* -1 =0,
i.e. z=z, =2inn, ne€ Z. They are isolated. Around such a point, let z = z,, + u, then

_(=DF

A+u?/6+...)

cey

I 1 1

e?—1 e%et—1 e¥—1
B 1 B 1
1+ u+u2+—1 u(l+ul2+..)

B 1—u/2+..._ 1 1

u u 2
i.e. z =z, = 2innis simple pole with residue 1 (for every n).
Zl((;g_zz) . Due to log z, there are two branch points, z =0 and z = co. A branch cut must connect them, and a
branch of log z is analytic everywhere outside the cut. All points on the cut are nonisolated (jump) s.p. of
the function. If the cut passes through the point z = 2, then z = 2 is a nonisolated s.p. If it does not, e.g. if

the cut connects 0 and oo on the negative real axis, then Laurent expansion around z = 2 is

logz B log2 +log(1+(z2—2)/2) B (log2+ (z—2)/12+...)01—-(z—-2)/2+...)
z2(z=2) Q2+ z-2)(z-2) 2(z-2)

_ log2 N 1-log2
2(z-2) 4
which means that, for every branch of log, z = 2 is a simple pole with residue log2/2.
sin(1/z%). Since sin{ is an entire function of ¢, the only singular point in the finite C is z = 0, being the only
one, it is isolated. For all finite z # 0, sin(1/z?) is equal to the convergent series,

“ey

sin(l/zz):i (-n" =§ (-1)"
=0 (222 2n+1)! oy 2422+ 1))

This is the Laurent series around z = 0, which shows that z = 0 is essential singular point. The first two
terms of the series are

1
sin(l/zz) =——-—+...
z2 6758

coth(1/z). The only s.p. are points where sinh(1/z) =0i.e. 1/z = ink, k€ Z, and z = 0. They are isolated
except for z = 0, which is the limit of the sequence of the other points, so z = 0 is a cluster point. Around a
point z =z = —i/(nk),let 1/z = u+ink, then

cosh(ink+ u) B cosh(imk)coshu B

th(1/z) = = =

coth(1/2) sinh(irk+u) cosh(imk)sinhu
1+u?/2+... 1 u
:—=_+_+...:
u+ud/l6+... u 3

4



z 1-inkz _ —i/(mk)+(z+il/(wk)) ink(z+il(mk))

T1zinkz | 3z T T imkG+ilmk) o 3i/k)
1 i kP (z+il (k)
= +—+ +...
m2k2(z+il(tk) gk 3

i.e. each s.p. is simple pole of strength 1/(w?k?) for k # 0. (k = 0 corresponds to z = oo which should be
considered separately, then z = 1/u, expand around u = 0 and get a simple pole again.)

Problem #8 (30 points): Evaluate the integral

1
I= 2—m‘¢;‘f(Z) dZ,

where C is the unit circle centered at the origin, and f(z) is given below:
2

Z
(a) f(Z)=m,O<d<].
(b) f(z)=cot(2z)

log(z + a)

© fla)= +1/a

, a> 1, principal branch

Solution:

(a) There are singular points at z = ia and z = —ia; both are inside the unit circle. We have

2 2

(2 z 1 +ia( 1 1 )
Z2)=——=]-—= J— — ,
z2+a? z2+a? 2 \z—ia z+ia

therefore ) .
ia
I=— dz=0+—(1-1)=0.
2m.fcf(Z) z 2( )

(b) The singular points are those where sin(2z) =0, i.e. z=zx = 1k/2, k € Z. Only one such point, z =0, is
inside C. Using that

cot(2z) =

cos(2z)  1-(22)%/2+... 1(1_(22)2+ ) 1 2z

sin2z)  2z-(22)3/6+... 2z 3 172273

where ... stand for higher powers of z. Thus, integrating powers of z, we get
1 1 1 1

I= —f f@)dz = —f —dz+0=—.

2mi Jc 2ni Jc 2z 2

(c) This f has a branch point at z = —a, make the branch cut on (—oo, —al] and, for the principal branch, when
z=Xx>a,log(z—a)=log|x—al. Then z=—1/a is a simple pole inside C. Expanding the function in the
Laurent series around z = —1/a, we get

log(z+a)_log(a—l/a+(z+1/a))_log(a—1/a)+(z+1/a)/(a—1/a)+..._10g(a—1/a)+ 1
z+1lla z+1/a B z+1/a - z+1la a-1/a

where dots stand for positive powers of z + 1/ a. Thus, deforming the contour to the small circle around
z=-1/a, we get

1 1 log(a—1/a)
I=— dz=—¢ ———dz+0=1 —1/a) =1 —-1/al,
Zniﬁjf(Z) z pyrl Ay z+ og(a a) =logla al

sincea—1/a>0> —a.



Problem #9 (20 points):

(a) Let f(z) =1+2z>+2z*+..., |z| < 1. Find a function, call it g(z), that analytically continues f(z) to |z| > 1;
what can be said about g(z) on |z| =1 and for | z| < 1; explain.

(b) Consider f(z) =log(2(z—1)); z—1= ret?. Discuss/ explain the analytic continuation of the function from
Ry — Ry, — Ry where r >0 and 6 is in the regions: R1: 0<0 <m/2; Ry: m/3<0 <4n/3; R3: m <0 <7m/3.

Solution:

(a) For|z| <1, f(2)is a convergent geometric series and its sum is 1/(1 — z%). Thus, if we define
g(2) =1/(1-z%), we get g(z) = f(z) for |z| < 1, and g(z) is analytic for all z € C except for z = +1. Thus, g(z)
is the analytic continuation of f(z) to |z| > 1. On |z| = 1, g(z) is analytic (and continuous) except for
z==l.

(b) f(z) =log(2(z—-1)) =log2+log(z—1). We have to find such branches of log(z — 1), fi(z) in Ry, f>2(z) in R,
and f3(z) in R3 that an analytic function f(z) can be defined in R; U R, U R3 by

filz), zeR;
f@=1 f(2), z€R
f3(2), z€Rs

This is possible if f1(z) = f>(z) in Ry U R, and f>(z) = f3(z) in R, U R3.

First, we have to choose fi(z) as a branch analytic in R;. Define fj (z) =log(z—1) for 0 < r < oo,

0 <0 < /2, as the principal branch of log(z — 1) with the branch cut on (-oo, 1]. Then f,(z) can be taken

e.g. as the principal branch of log(z — 1) for the cut on [1, +00), then f(2) = f1(2) = f2(2) form/3 <0 < 7/2.
Now, to continue f, from R, to R3, one can take f3(z) as e.g. the branch of log(z — 1) for the cut outside of
R3 e.g. on the ray [1, +00- €"/3), such that the range of 0 is 277/3 < 6 < 87/3 for this branch. Then

f(2) = f5(2) = f3(2) for m <0 < 4n/3. The whole range of 6 for f(z) here exceeds 27 therefore such f(z) is

defined on the Riemann surface of log(z — 1) but cannot be defined in C.

Extra-Credit Problem #10 (10 points): Given the function

0o e—l/t
A(z):f 5 dat,
z 2

Find a Laurent expansion in powers of z for |z| > R, R > 0. Why will the same procedure fail if we consider

oo ,—t
E(2) :f ¢ dr
z t

Solution: In fact
A(Z) — e—l/[|zo — 1 _e—l/Z,

therefore the Laurent expansion in powers of z for [z| > R, R >0, is

(_l)n B (_1)n+1
zZ'n! = zZ'nl

AR)=1-)

n=0
Consider the ratio test for the series:

(@ nllz” 1
lan(2)l  (n+Dlz|"!  (n+1)z|

n—oo 0)

for all z s.t. |z| > R > 0, so the series converges.



As for E(z), iterating the identity

oo e—t e % o] e—t
f —dt:——kf Z _dr,
z tk Zk 2z tk+1

starting with k = 1 up to k = n, one obtains the series expansion with the remainder term R;,(z). Consider the

ratio test for the series: .
lans1(2)] _ (n+1)!z|""

lan(2)] nllz|"

for all z # 0, so the series diverges.




