
APPM 4360/5360 Homework Assignment #5 Solutions Spring 2019

Problem #1 (15 points): Consider fn(z)gn(z) in a domain D where: |gn(z)| ≤ M ; M constant in D and fn(z)

converges to zero uniformly for all z ∈ D . Prove fn(z)gn(z) converges to zero uniformly for all z ∈ D .

Solution: By definition of uniform convergence, for any ǫ> 0 there is a number N (ǫ) such that, for all z ∈ D and

all n > N (ǫ), | fn(z)| < ǫ. For a given ǫ> 0, let ǫ1 = ǫ/M . Then, for all z ∈ D and all n > Ñ (ǫ) = N (ǫ1), we have

0 ≤ | fn(z)gn(z)| = | fn(z)||gn(z)| ≤ M | fn(z)| < Mǫ1 = ǫ.

This proves the statement.

Problem #2 (15 points): Find the Taylor series expansion of the following functions:

(a) z2/(1+ z3), |z| < 1;

(b) coshkz, k > 0 constant;

(c) ze i kz2

; k > 0 constant.

Solution:

(a) z2/(1+ z3), |z| < 1; using geometric series,

z2

1+ z3
= z2

∞
∑

n=0

(−z3)n
=

∞
∑

n=0

(−1)n z3n+2.

(b) coshkz, k > 0 constant;

coshkz =

∞
∑

n=0

(kz)2n

(2n)!
.

(c) ze i kz2

; k > 0 constant.

ze i kz2

= z
∞
∑

n=0

(i kz2)n

n!
=

∞
∑

n=0

i nkn z2n+1

n!
,

where i n = 1 for n = 4m, i n = i for n = 4m +1, i n =−1 for n = 4m +2 and i n =−i for n = 4m +3, all m ∈Z.

Problem #3 (20 points): Given

F (z) =

∫∞

−∞

f (t )e i zt d t ,

where f (t ) = eα1t , t < 0, and f (t ) = e−α2t , t > 0; α j > 0, j = 1,2 constants. Find the region of the complex plane

where F (z) is analytic; explain. Do the same if f (t ) = te−κt 2

, κ> 0; explain. F (z) is referred to as the Fourier

transform of f (t ).

Solution: Let h(z, t ) = f (t )e i zt . Then, for both cases mentioned,

1) h(z, t ) is entire function of z for all t ;

2) h(z, t ) is continuous function of t for all z;

since the integral over t is improper, one has to verify condition 3) of the theorem about analyticity of such

integrals: whether there is a function G(t ) such that |h(z, t )| ≤G(t ) and
∫∞

−∞G(t )d t <∞. Let z = x + i y .

Then

|h(z, t )| = | f (t )||e i zt
| = | f (t )||e i (x+i y)t

| = | f (t )|e−y t .

Then, for the first given f (t ), one gets

t < 0 : |h(z, t )| = e(α1−y)t ,
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t > 0 : |h(z, t )| = e−(α2+y)t ,

so
∫∞

−∞ |h(z, t )|d t is finite if and only if α1 − y > 0 and α2 + y > 0. Thus, F (z) is analytic in the horizontal strip

−α2 < Imz <α1.

For the second given f (t ),
∫∞

−∞ |h(z, t )|d t is finite for all z, therefore F (z) is analytic for all finite z in this case.

Formally, one can consider a region y > y0 in C. Then

|h(z, t )| <G(t ) = e−κt 2

e−y0t ,

and
∫∞

−∞G(t )d t <∞, so in this region one directly applies the theorem. This is true for any finite y0 so F (z) is

analytic for all finite z.

Problem #4 (20 points): Let

F (z) =

∫∞

0
f (t )e−zt d t ,

where f (t ) is continuous function, | f (t )| ≤ Ae−αt , A > 0, α> 0 constants. Find the region of the complex plane

where F (z) is analytic; explain. F (z) is referred to as the Laplace transform of f (t ).

Solution: Let g (z, t ) = f (t )e−zt , then g (z, t ) is analytic in z in C and continuous in t for all t > 0. Also we have

(z = x + i y)

|g (z, t )| = | f (t )||e−zt
| ≤ Ae−αt e−xt ,

and
∫∞

0 Ae−(x+α)t d t is finite for x >−α. Therefore F (z) is analytic in the (infinite) vertical strip Rez >−α, by the

same theorem as used in the previous problem.

Problem #5 (20 points): Let f (z) = 1/(z2 +α2), α> 0. Find the Laurent expansion in the regions

(a) |z| >α

(b) |z| <α

Solution:

f (z) =
1

z2 +α2
=

1

2iα

(

1

z − iα
−

1

z + iα

)

.

(a) |z| >α

f (z) =
1

2iαz

(

1

1− iα/z
−

1

1+ iα/z

)

=

=
1

2iαz

∞
∑

n=0

(

(iα)n

zn
−

(−iα)n

zn

)

=

=−

∞
∑

m=1

(−1)m(2α)2m−2

z2m
.

(b) |z| <α

f (z) =
1

2α2

(

1

1+ i z/α
+

1

1− i z/α

)

=

=
1

2α2

∞
∑

n=0

(

(−i z)n

αn
+

(i z)n

αn

)

=

=
1

α2

∞
∑

m=0

(−1)m z2m

α2m
.
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Problem #6 (15 points): Given the function

f (z) =
2z

(z − i )(z +2)
,

find the Laurent series of f (z) in the regions

(a) |z| < 1

(b) 1 < |z| < 2

(c) |z| > 2

Solution: Using partial fractions, we see that

2z

(z − i )(z +2)
=

2/5+4i /5

z − i
+

8/5−4i /5

z +2
.

(a) For |z| < 1,

f (z) = i
2/5+4i /5

1+ i z
+

4/5−2i /5

1+ z/2

=

(

4−2i

5

)

∞
∑

n=0

(

−(−i )n
+

(

−1

2

)n)

zn .

(b) For 1 < |z| < 2,

f (z) =
2/5+4i /5

z(1− i /z)
+

4/5−2i /5

1+ z/2

=

(

2(1+2i )

5

)

∞
∑

n=0

i n

zn+1
+

(

2(2− i )

5

)

∞
∑

n=0

(

−1

2

)n

zn

(c) For |z| > 2,

f (z) =
2(1/5+2i /5)

z(1− i /z)
+

2(4/5−2i /5)

z

(

1

1+2/z

)

=

(

2(1+2i )

5

)

∞
∑

n=0

i n

zn+1
+

2(4/5−2i /5)

z

∞
∑

n=0

(−2)n

zn

=

(

2(2− i )

5

)

∞
∑

n=0

(

i n+1
− (−2)n+1

) 1

zn+1
.

Problem #7 (45 points): Discuss all singularities of the following functions including the type of singularity:

removable, pole – include order, essential, branch point, cluster, . . . , that each of these functions has in the finite

z-plane. For parts a,b,c,d, if the functions have a Laurent series around any of the singularities find the first two

nonzero terms.

(a) secz

(b) 1
ez−1

(c)
log z

z(z−2)

(d) sin(1/z2)

(e) coth(1/z)
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Solution:

(a) secz = 1/cos z. Since cos z is an entire function, the only singular points are those where cos(z) = 0,

i.e. z = zk =π/2+πk, k ∈Z. Around such a point, let z = zk + (z − zk ) = zk +u, then

1

cos(z)
=

1

cos(zk +u)
=−

1

sin(zk )sin(u)
=

=
(−1)k

sin(u)
=

(−1)k

u −u3/6+ . . .
=

=
(−1)k

u
(1+u2/6+ . . . ) =

(−1)k

u
+

(−1)k u

6
+ . . . ,

where . . . correspond to positive powers of u = z − zk greater than 1. I.e. z = zk =π/2+πk is simple pole

with strength (−1)k .

(b) 1
ez−1

. Since the denominator is an entire function, the only singular points are those where ez −1 = 0,

i.e. z = zn = 2iπn, n ∈Z. They are isolated. Around such a point, let z = zn +u, then

1

ez −1
=

1

ezn eu −1
=

1

eu −1
=

=
1

1+u +u2/2+·· ·−1
=

1

u(1+u/2+ . . . )
=

=
1−u/2+ . . .

u
=

1

u
−

1

2
+ . . . ,

i.e. z = zn = 2iπn is simple pole with residue 1 (for every n).

(c)
log z

z(z−2)
. Due to log z, there are two branch points, z = 0 and z =∞. A branch cut must connect them, and a

branch of log z is analytic everywhere outside the cut. All points on the cut are nonisolated (jump) s.p. of

the function. If the cut passes through the point z = 2, then z = 2 is a nonisolated s.p. If it does not, e.g. if

the cut connects 0 and ∞ on the negative real axis, then Laurent expansion around z = 2 is

log z

z(z −2)
=

log2+ log(1+ (z −2)/2)

(2+ (z −2))(z −2)
=

(log2+ (z −2)/2+ . . . )(1− (z −2)/2+ . . . )

2(z −2)
=

=
log2

2(z −2)
+

1− log2

4
+ . . . ,

which means that, for every branch of log, z = 2 is a simple pole with residue log2/2.

(d) sin(1/z2). Since sinζ is an entire function of ζ, the only singular point in the finite C is z = 0, being the only

one, it is isolated. For all finite z 6= 0, sin(1/z2) is equal to the convergent series,

sin(1/z2) =
∞
∑

n=0

(−1)n

(z2)2n+1(2n +1)!
=

∞
∑

n=0

(−1)n

z4n+2(2n +1)!
.

This is the Laurent series around z = 0, which shows that z = 0 is essential singular point. The first two

terms of the series are

sin(1/z2) =
1

z2
−

1

6z6
+ . . .

(e) coth(1/z). The only s.p. are points where sinh(1/z) = 0 i.e. 1/z = iπk, k ∈Z, and z = 0. They are isolated

except for z = 0, which is the limit of the sequence of the other points, so z = 0 is a cluster point. Around a

point z = zk =−i /(πk), let 1/z = u + iπk, then

coth(1/z) =
cosh(iπk +u)

sinh(iπk +u)
=

cosh(iπk)coshu

cosh(iπk)sinhu
=

=
1+u2/2+ . . .

u +u3/6+ . . .
=

1

u
+

u

3
+·· · =
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=
z

1− iπkz
+

1− iπkz

3z
+·· · =−

−i /(πk)+ (z + i /(πk))

iπk(z + i /(πk))
+

iπk(z + i /(πk))

3i /(πk)
+·· · =

=
1

π2k2(z + i /(πk))
+

i

πk
+
π2k2(z + i /(πk))

3
+ . . .

i.e. each s.p. is simple pole of strength 1/(π2k2) for k 6= 0. (k = 0 corresponds to z =∞ which should be

considered separately, then z = 1/u, expand around u = 0 and get a simple pole again.)

Problem #8 (30 points): Evaluate the integral

I =
1

2πi

∮

C
f (z)d z,

where C is the unit circle centered at the origin, and f (z) is given below:

(a) f (z) =
z2

z2 +a2
, 0 < a < 1

(b) f (z) = cot(2z)

(c) f (z) =
log(z +a)

z +1/a
, a > 1, principal branch

Solution:

(a) There are singular points at z = i a and z =−i a; both are inside the unit circle. We have

f (z) =
z2

z2 +a2
= 1−

a2

z2 +a2
= 1+

i a

2

(

1

z − i a
−

1

z + i a

)

,

therefore

I =
1

2πi

∮

C
f (z)d z = 0+

i a

2
(1−1) = 0.

(b) The singular points are those where sin(2z) = 0, i.e. z = zk =πk/2, k ∈Z. Only one such point, z = 0, is

inside C . Using that

cot(2z) =
cos(2z)

sin(2z)
=

1− (2z)2/2+ . . .

2z − (2z)3/6+ . . .
=

1

2z

(

1−
(2z)2

3
+ . . .

)

=
1

2z
−

2z

3
+ . . . ,

where . . . stand for higher powers of z. Thus, integrating powers of z, we get

I =
1

2πi

∮

C
f (z)d z =

1

2πi

∮

C

1

2z
d z +0 =

1

2
.

(c) This f has a branch point at z =−a, make the branch cut on (−∞,−a] and, for the principal branch, when

z = x > a, log(z −a) = log |x −a|. Then z =−1/a is a simple pole inside C . Expanding the function in the

Laurent series around z =−1/a, we get

log(z +a)

z +1/a
=

log(a −1/a + (z +1/a))

z +1/a
=

log(a −1/a)+ (z +1/a)/(a −1/a)+ . . .

z +1/a
=

log(a −1/a)

z +1/a
+

1

a −1/a
+ . . . ,

where dots stand for positive powers of z +1/a. Thus, deforming the contour to the small circle around

z =−1/a, we get

I =
1

2πi

∮

C
f (z)d z =

1

2πi

∮

C

log(a −1/a)

z +1/a
d z +0 = log(a −1/a) = log |a −1/a|,

since a −1/a > 0 >−a.
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Problem #9 (20 points):

(a) Let f (z) = 1+ z2 + z4 + . . . , |z| < 1. Find a function, call it g (z), that analytically continues f (z) to |z| > 1;

what can be said about g (z) on |z| = 1 and for |z| < 1; explain.

(b) Consider f (z) = log(2(z −1)); z −1 = r e iθ. Discuss/explain the analytic continuation of the function from

R1 → R2 → R3 where r > 0 and θ is in the regions: R1: 0 ≤ θ ≤π/2; R2: π/3 ≤ θ ≤ 4π/3; R3: π≤ θ ≤ 7π/3.

Solution:

(a) For |z| < 1, f (z) is a convergent geometric series and its sum is 1/(1− z2). Thus, if we define

g (z) = 1/(1− z2), we get g (z) = f (z) for |z| < 1, and g (z) is analytic for all z ∈C except for z =±1. Thus, g (z)

is the analytic continuation of f (z) to |z| > 1. On |z| = 1, g (z) is analytic (and continuous) except for

z =±1.

(b) f (z) = log(2(z −1)) = log2+ log(z −1). We have to find such branches of log(z −1), f1(z) in R1, f2(z) in R2

and f3(z) in R3 that an analytic function f (z) can be defined in R1 ∪R2 ∪R3 by

f (z) =







f1(z), z ∈ R1

f2(z), z ∈ R2

f3(z), z ∈ R3

This is possible if f1(z) = f2(z) in R1 ∪R2 and f2(z) = f3(z) in R2 ∪R3.

First, we have to choose f1(z) as a branch analytic in R1. Define f1(z) = log(z −1) for 0 < r <∞,

0 ≤ θ ≤π/2, as the principal branch of log(z −1) with the branch cut on (−∞,1]. Then f2(z) can be taken

e.g. as the principal branch of log(z −1) for the cut on [1,+∞), then f (z) = f1(z) = f2(z) for π/3 ≤ θ ≤π/2.

Now, to continue f2 from R2 to R3, one can take f3(z) as e.g. the branch of log(z −1) for the cut outside of

R3 e.g. on the ray [1,+∞·e2πi /3), such that the range of θ is 2π/3 ≤ θ < 8π/3 for this branch. Then

f (z) = f2(z) = f3(z) for π≤ θ ≤ 4π/3. The whole range of θ for f (z) here exceeds 2π therefore such f (z) is

defined on the Riemann surface of log(z −1) but cannot be defined in C.

Extra-Credit Problem #10 (10 points): Given the function

A(z) =

∫∞

z

e−1/t

t 2
d t ,

Find a Laurent expansion in powers of z for |z| > R, R > 0. Why will the same procedure fail if we consider

E (z) =

∫∞

z

e−t

t
d t

Solution: In fact

A(z) = e−1/t
∣

∣

∞

z = 1−e−1/z ,

therefore the Laurent expansion in powers of z for |z| > R, R > 0, is

A(z) = 1−
∑

n=0

(−1)n

znn!
=

∑

n=1

(−1)n+1

znn!
.

Consider the ratio test for the series:

|an+1(z)|

|an(z)|
=

n!|z|n

(n +1)!|z|n+1
=

1

(n +1)|z|
→n→∞ 0,

for all z s.t. |z| > R > 0, so the series converges.
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As for E (z), iterating the identity
∫∞

z

e−t

t k
d t =

e−z

zk
−k

∫∞

z

e−t

t k+1
d t ,

starting with k = 1 up to k = n, one obtains the series expansion with the remainder term Rn(z). Consider the

ratio test for the series:
|an+1(z)|

|an(z)|
=

(n +1)!|z|n+1

n!|z|n
= (n +1)z →n→∞ ∞,

for all z 6= 0, so the series diverges.
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