APPM 5600: Homework \#5

Due in class Wednesday October 25

1 Atkinson Chapter 3, problem 26.
2 Atkinson Chapter 3, problem 30.
3 Consider the vector space of cubic splines with knots $\{-1,0,1\}$. It's clear from the definition that any element of the space can be written as a piecewise polynomial of the form $a_{0}+b_{0} x+c_{0} x^{2}+d_{0} x^{3}$ on $[-1,0]$ and $a_{1}+b_{1} x+c_{1} x^{2}+d_{1} x^{3}$ on $[0,1]$. There are 8 coefficients in this representation, but they are not all free, because of the matching/smoothness conditions at $x=0$. It was claimed during the proof that the space of splines has dimension $k+n-1\left(k^{\text {th }}\right.$ order, $n+1$ knots) that the set $\left\{1, x, \ldots, x^{k-1},\left(x-x_{1}\right)_{+}^{k-1}, \cdots,\left(x-x_{n-1}\right)_{+}^{k-1}\right\}$ is a basis for the space of splines. Show explicitly that the set $\left\{1, x, x^{2}, x^{3},(x-0)_{+}^{3}\right\}$ is a basis for the space of cubic splines with knots $-1,0$, and 1 .

4 Consider interpolating the function $f(x)=x /\left(1+25 x^{2}\right)$ over the interval $[-1,1]$. Construct and plot [using a computer, not by hand] the function itself and (a) the following interpolants and (b) the absolute errors for the following

- The standard polynomial interpolant using 21 equispaced points
- The Hermite interpolant using 11 equispaced points.
- The piecewise-linear, continuous interpolant using 21 equispaced points (20 intervals)
- The piecewise-cubic Hermite interpolant using 11 equispaced points (10 intervals)
- The natural cubic spline interpolant using 21 equispaced points

