
APPM 4360/5360 Homework Assignment #4 Solutions Spring 2019

Problem #1 (20 points): Evaluate the integral
∮

C f (z)d z where C is the unit circle enclosing the origin and f (z)

is given by

(a) log(z +2)

(b) 1/(z2 +1/4)

Solution:

(a) log(z +2).

Consider an analytic branch of log(z+2) such that branch cut joining z =−2 and ∞ does not cross the unit

circle centered at z = 0. Then log(z +2) is analytic inside C and, by Cauchy theorem,
∮

C log(z +2)d z = 0.

(b) 1/(z2 +1/4).

1

z2 +1/4
=

1

i (z − i /2)
−

1

i (z + i /2)
,

z =±i /2 are the singularities of f (z) inside the contour. For each summand, we find

∮

C

1

i (z − i /2)
d z = 2πi /i = 2π,

∮

C

1

i (z + i /2)
d z = 2πi /i = 2π,

so
∮

C f (z)d z = 2π−2π= 0.

Problem #2 (20 points): Evaluate the integral
∮

C f (z)d z where C is the unit circle centered at the origin for the

following f (z):

(a)
e i z

z

(b)
cos z −1

z3

Solution: Here the only singular point inside the unit circle is z = 0. We expand the numerators in Taylor series

around zero and use the integration of powers formula:

(a)
e i z

z
=

1

z

∞
∑

n=0

(i z)n

n!
= i

∞
∑

k=−1

(i z)k

(k +1)!
,

power z−1 corresponds to k =−1, thus
∮

C f (z)d z = 2πi .

(b)
cos z −1

z3
=

1

z3
−

1

2z
+

z

24
+·· · ,

so
∮

C f (z)d z =−2πi /2 =−iπ.

Problem #3 (20 points): Evaluate the integrals
∮

C f (z)d z over a contour C , where C is the boundary of a square

with diagonal opposite corners at z =−(1+ i )R and z = (1+ i )R, where R > a > 0, and where f (z) is given by the

following (use Eq. (1.2.19) as necessary):

(a)
ez

(z − πi
4

a)2

(b)
z2

2z +a
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Solution:

(a)
ez

(z − πi
4

a)2
.

Let z0 =
πi
4

a, it is inside the square; we expand ez in Taylor series around z = z0 here,

ez

(z − πi
4

a)2
=

ez0 ez−z0

(z − z0)2
=

ez0

(z − z0)2

∞
∑

n=0

(z − z0)n

n!
=

=
ez0

(z − z0)2

(

1+ (z − z0)+
(z − z0)2

2
+ . . .

)

= ez0

(

1

(z − z0)2
+

1

z − z0
+

1

2
+ . . .

)

,

and the only singular point z = z0 is inside the contour. Deforming the contour to a circle around z = z0

and using Cauchy theorem, we find

∮

C

ez

(z − πi
4

a)2
= ez0

∮

C

1

z − z0
d z = 2πi ez0 = 2πi e

πi
4

a .

(b)
z2

2z +a
.

z2

2z +a
=

(−a/2+ (z +a/2))2

2(z +a/2)
=

=
a2

8(z +a/2)
−

a

2
+

z +a/2

2
,

and the only singular point z =−a/2 is inside the contour. Deforming the contour to a circle around

z =−a/2 and using Cauchy theorem, we find

∮

C

z2

2z +a
d z =

∮

C

a2

8(z +a/2)
d z =

πi a2

4
.

Problem #4 (25 points): Let f (z) be an entire function, with | f (z)| ≤C |z| for all z, where C is a constant. Show

that f (z) = Az, where A is a constant.

Solution: Ussing the (generalized) Cauchy formula,

f ′(z) =
1

2πi

∮

C

f (ζ)

(ζ− z)2
dζ,

where C = {|ζ− z| = R} is the circle of radius R around z in ζ-plane. Then

| f ′(z)| ≤
1

2π

∮

C

| f (ζ)|

|ζ− z|2
|dζ| ≤

≤
1

2π

∫2π

0

C (|z|+R)

R2
Rdθ =C (1+|z|/R) →R→∞ C ,

so f ′(z) is entire and bounded, so it is constant by Liouville theorem. Let f ′(z) = A, then f (z) = Az +B , where A,

B are constants. But, since | f (z)| ≤C |z| for all z, taking |z|→ 0, we get B = 0. Thus, f (z) = Az as claimed.

Problem #5 (20 points): Discuss whether the sequence {1/(nz)2}∞1 converges and whether the convergence is

uniform for: 0 <α< |z| < 1. Discuss whether the convergence is uniform if α= 0.
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Solution:

lim
n→∞

1

(nz)2
=

1

z2
lim

n→∞

1

n2
= 0,

so the sequence converges pointwise for every z. If |z| >α> 0, then

∣

∣

∣

∣

1

(nz)2

∣

∣

∣

∣

=
1

n2|z|2
≤

1

α2n2
,

which is a convergent numerical sequence. Thus, the convergence is uniform for 0 <α< |z|. However, for α= 0

convergence is not uniform since 1/|z|2 is unbounded above in this case.

Problem #6 (20 points): Show that the following series converge uniformly in the given region:

(a)
∑∞

n=1 z2n , 0 ≤ |z| < R < 1

(b)
∑∞

n=1 e−2nz , R < Rez < 1

Solution:

(a)
∣

∣

∣

∣

∞
∑

n=1

z2n

∣

∣

∣

∣

≤

∞
∑

n=1

|z|2n
≤

∞
∑

n=1

R2n
=

R2

1−R2
,

i.e. the series is bounded above by a convergent numerical series which means uniform convergence by

Weierstrass M-test.

(b)
∣

∣

∣

∣

∞
∑

n=1

e−2nz

∣

∣

∣

∣

≤

∞
∑

n=1

|e−2nz
| =

∞
∑

n=1

e−2nRez
<

∞
∑

n=1

e−2nR
=

e−2R

1−e−2R

for R > 0, i.e. the series is bounded above by a convergent numerical series for R > 0 which means

uniform convergence by Weierstrass M-test for R > 0 (but not for R ≤ 0).

Problem #7 (20 points): Find the radius of convergence of the series
∑∞

0 an(z) where an(z) is given by:

(a) (−z2)n

(b) n2n z4n

Solution: We apply the ratio test.

(a) (−z2)n ,
∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

=

∣

∣

∣

∣

(−z2)n

(−z2)n+1

∣

∣

∣

∣

=
1

|z|2
,

therefore the series converges for |z| < 1 and radius of convergence R = 1.

(b) n2n z4n
∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

=

∣

∣

∣

∣

n2n z4n

(n +1)2(n+1)z4(n+1)

∣

∣

∣

∣

=

=
1

(n +1)2(1+1/n)2n |z|4
→n→∞ 0,

which shows that R = 0 (series converges only for z = 0).

Problem #8 (15 points): Find Taylor series expansions around z = 0 of the following functions in the given

regions:
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(a) z
1+z2 , |z| < 1

(b) sin z
z

, 0 < |z| <∞

(c) ez2
−1−z2

z3 , 0 < |z| <∞

Solution:

(a) z
1+z2 , |z| < 1

z

1+ z2
= z

∞
∑

n=0

(−z2)n
=

∞
∑

n=0

(−1)n z2n+1.

(b) sin z
z

, 0 < |z| <∞

sin z

z
=

1

z

∞
∑

n=0

(−1)n z2n+1

(2n +1)!
=

∞
∑

n=0

(−1)n z2n

(2n +1)!
.

(c) ez2
−1−z2

z3 , 0 < |z| <∞

ez2

−1− z2

z3
=

1

z3

(

∞
∑

n=0

z2n

n!
−1− z2

)

=

=

∞
∑

n=2

z2n−3

n!
=

∞
∑

n=0

z2n+1

(n +2)!
.

Problem #9 (20 points): Use the Taylor series for (1+ z)−1 about z = 0 to find the Taylor series of log(1+ z) about

z = 0 for |z| < 1.

Solution: The Taylor series for (1+ z)−1 is just the geometric series

1

1+ z
=

∞
∑

n=0

(−1)n zn ,

and we know that it converges uniformly in |z| < 1. Since
∫

(1+ z)−1 d z = log(1+ z)+ c and since the above series

converges uniformly, we can integrate it termwise. Taking the (principal) branch of log such that log1 = 0, we

find

log(1+ z) =
∞
∑

n=0

(−1)n zn+1

n +1
=

∞
∑

n=1

(−1)n−1 zn

n
.

Problem #10 (20 points): Find a series representation for 1/(1+z2) for |z| > 1. (Hint: see the discussion and hint

of problem 3.2.8)

Solution: The Taylor series for 1/(1+ z2) is just the geometric series

1

1+ z2
=

∞
∑

n=0

(−1)n z2n ,

and we know that it converges in |z| < 1. For |z| > 1, 1/|z| < 1, so we have

1

1+ z2
=

1

z2(1+1/z2)
=

1

z2

∞
∑

n=0

(−1)n

z2n
=

∞
∑

n=0

(−1)n

z2(n+1)
.
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Extra-Credit Problem #11 (10 points): In Cauchy’s Integral Formula (Eq. (2.6.1)), take the contour to be a circle

of unit radius centered at the origin. Let ζ= e iθ to deduce

f (z) =
1

2π

∫2π

0

f (ζ)ζ

ζ− z
dθ

where z lies inside the circle. Explain why we have

0 =
1

2π

∫2π

0

f (ζ)ζ

ζ−1/z̄
dθ

and use ζ= 1/ζ̄ to show

f (z) =
1

2π

∫2π

0
f (ζ)

(

ζ

ζ− z
±

z̄

ζ̄− z̄

)

dθ

whereupon, using the plus sign

f (z) =
1

2π

∫2π

0
f (ζ)

1−|z|2

|ζ− z|2
dθ

(a) Deduce the “Poisson formula" for the real part of f (z): u(r,φ) = Re f (z), z = r e iφ

u(r,φ) =
1

2π

∫2π

0
u(θ)

1− r 2

(1−2r cos(φ−θ)+ r 2)
dθ

where u(θ) = u(1,θ).

(b) If we use the minus sign in the formula for f (z) above, show that

f (z) =
1

2π

∫2π

0
f (ζ)

[

1+ r 2 −2r e i (θ−φ)

(1−2r cos(φ−θ)+ r 2)

]

dθ

and by taking the imaginary part

v(r,φ) =C +
1

π

∫2π

0
u(θ)

r sin(φ−θ)

(1−2r cos(φ−θ)+ r 2)
dθ

where C =
1

2π

∫2π
0 v(1,θ)dθ = v(r = 0). (This last relationship follows from the Cauchy Integral formula at

z = 0 – see the first equation in this exercise.)

Solution: First formula is due to dζ= i e iθdθ = iζdθ. Since z is inside the unit circle, z̄ is also and then 1/z̄ is

ouside which yields the second formula by Cauchy theorem. Using that ζζ̄= 1 on the unit circle, the third

formulas are obtained by adding/subtracting the first two formulas, respectively. The fourth formula is

straightforward (again use ζζ̄= 1). Let f (z) = u + i v , u and v real.

(a) Take the real part of the fourth formula: Re f (z) = u(r,φ), Re f (ζ) = Re f (e iθ) = u(1,θ) = u(θ), |z| = r and

|ζ− z|2 = (ζ− z)(ζ̄− z̄) = 1− (ζz̄ + zζ̄)+ r 2
= 1− r (e iθe−iφ

+e iφe−iθ)+ r 2
= 1−2r cos(θ−φ)+ r 2.

Thus, Poisson formula is obtained.

(b) We have
ζ

ζ− z
−

z̄

ζ̄− z̄
=

1+ r 2 −2e iθr e−iφ

|ζ− z|2
=

1+ r 2 −2r e i (θ−φ)

1−2r cos(θ−φ)+ r 2
,

thus,

f (z) =
1

2π

∫2π

0
f (ζ)

[

1+ r 2 −2r e i (θ−φ)

1−2r cos(φ−θ)+ r 2

]

dθ.
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Taking the imaginary part of the last formula, we get

v(r,φ) =
1

2π

∫2π

0
v(1,θ)

[

1+ r 2 −2r cos(φ−θ)

1−2r cos(φ−θ)+ r 2

]

dθ+
1

2π

∫2π

0
u(θ)

[

2r sin(φ−θ)

1−2r cos(φ−θ)+ r 2

]

dθ =

=
1

2π

∫2π

0
v(1,θ)dθ+

1

π

∫2π

0
u(θ)

[

r sin(φ−θ)

1−2r cos(φ−θ)+ r 2

]

dθ,

which is the last claimed formula.
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