APPM 4360/5360 Homework Assignment #4 Solutions Spring 2019

Problem #1 (20 points): Evaluate the integral § f(z)dz where C is the unit circle enclosing the origin and f(z)
is given by

(@) log(z+2)
(b) 1/(z%2+1/4)

Solution:

(@) log(z+2).
Consider an analytic branch oflog(z+2) such that branch cut joining z = —2 and co does not cross the unit
circle centered at z = 0. Then log(z + 2) is analytic inside C and, by Cauchy theorem, §.log(z +2)dz = 0.

(b) 1/(z*+1/4).
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z = +1i/2 are the singularities of f(z) inside the contour. For each summand, we find
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Problem #2 (20 points): Evaluate the integral fc f(z) dz where C is the unit circle centered at the origin for the
following f(z):
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Solution: Here the only singular point inside the unit circle is z = 0. We expand the numerators in Taylor series
around zero and use the integration of powers formula:
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corresponds to k = —1, thus §. f(2) dz = 2xi.
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Problem #3 (20 points): Evaluate the integrals fc f(z)dz over a contour C, where C is the boundary of a square
with diagonal opposite corners at z = —(1+i)R and z = (1 + i) R, where R > a > 0, and where f(z) is given by the
following (use Eq. (1.2.19) as necessary):
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Solution:
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Let zo = %' a, it is inside the square; we expand e in Taylor series around z = z here,
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and the only singular point z = z is inside the contour. Deforming the contour to a circle around z = z
and using Cauchy theorem, we find
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and the only singular point z = —a/2 is inside the contour. Deforming the contour to a circle around
z = —al2 and using Cauchy theorem, we find
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Problem #4 (25 points): Let f(z) be an entire function, with | f(z)| < C|z| for all z, where C is a constant. Show
that f(z) = Az, where A is a constant.

Solution: Ussing the (generalized) Cauchy formula,
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where C = {|{ — z| = R} is the circle of radius R around z in {-plane. Then
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so f'(z) is entire and bounded, so it is constant by Liouville theorem. Let f'(z) = A, then f(z) = Az+ B, where A,
B are constants. But, since | f(z)| = C|z| for all z, taking |z| — 0, we get B =0. Thus, f(z) = Az as claimed.
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Problem #5 (20 points): Discuss whether the sequence {ll(nz)z}‘l>o converges and whether the convergence is
uniform for: 0 < a < |z| < 1. Discuss whether the convergence is uniform if @ = 0.



Solution:
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so the sequence converges pointwise for every z. If |z| > a > 0, then
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which is a convergent numerical sequence. Thus, the convergence is uniform for 0 < & < |z|. However, for @ =0
convergence is not uniform since 1/|z|? is unbounded above in this case.

Problem #6 (20 points): Show that the following series converge uniformly in the given region:
(@ Y% ,7*",0=<|zI<R<1

(b) ¥, e " R<Rez<1

Solution:
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i.e. the series is bounded above by a convergent numerical series which means uniform convergence by
Weierstrass M-test.
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for R >0, i.e. the series is bounded above by a convergent numerical series for R > 0 which means
uniform convergence by Weierstrass M-test for R > 0 (but not for R < 0).

Problem #7 (20 points): Find the radius of convergence of the series }.3° a,(z) where a;(2) is given by:
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Solution: We apply the ratio test.
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therefore the series converges for |z| < 1 and radius of convergence R = 1.
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which shows that R = 0 (series converges only for z = 0).
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Problem #8 (15 points): Find Taylor series expansions around z = 0 of the following functions in the given
regions:
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Problem #9 (20 points): Use the Taylor series for (1 + z)~! about z = 0 to find the Taylor series of log(1 + z) about
z=0for|z| <1.

Solution: The Taylor series for (1 + z) ! is just the geometric series
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and we know that it converges uniformly in |z| < 1. Since [(1 + z)~! dz = log(l + z) + ¢ and since the above series
converges uniformly, we can integrate it termwise. Taking the (principal) branch of log such thatlog1 = 0, we
find
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Problem #10 (20 points): Find a series representation for 1/(1 + z2) for |z| > 1. (Hint: see the discussion and hint
of problem 3.2.8)

Solution: The Taylor series for 1/(1 + z2) is just the geometric series
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and we know that it converges in |z| < 1. For |z| > 1, 1/|z| < 1, so we have
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Extra-Credit Problem #11 (10 points): In Cauchy’s Integral Formula (Eq. (2.6.1)), take the contour to be a circle

of unit radius centered at the origin. Let { = ¢? to deduce
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where z lies inside the circle. Explain why we have
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(a) Deduce the “Poisson formula" for the real part of f(2): u(r,¢) = Ref(2), z = re'?
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where u(0) = u(1,0).
(b) If we use the minus sign in the formula for f(z) above, show that
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and by taking the imaginary part
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where C = 5= 02” v(1,0)d0 = v(r = 0). (This last relationship follows from the Cauchy Integral formula at

z=0-see the first equation in this exercise.)

id@. Since z is inside the unit circle, z is also and then 1/Z is

Solution: First formula is due to d{ = ie?do = ]
ouside which yields the second formula by Cauchy theorem. Using that {{ = 1 on the unit circle, the third

formulas are obtained by adding/subtracting the first two formulas, respectively. The fourth formula is

straightforward (again use {{ = 1). Let f(z) = u+iv, u and v real.

(a) Take the real part of the fourth formula: Ref(z) = u(r,$), Ref(() = Ref(e!?) = u(1,0) = u(®), |zl = r and
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Thus, Poisson formula is obtained.
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Taking the imaginary part of the last formula, we get
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which is the last claimed formula.




