4. Assignment 4

Due Wednesday, February 21

Gregory Beylkin, ECOT 323

(1) Suppose that *n*-by-*n* matrix *A* is symmetric and positive definite. Consider the following iteration:

$$A_0 = A$$

for $k = 1, 2, 3, ...$
$$A_{k-1} = G_k G_k^T$$
$$A_k = G_k^T G_k$$

Here $G_k G_k^T$ is the Cholesky factorization of a symmetric positive definite matrix.

Show that this iteration is well defined, i.e. $G_k^T G_k$ is symmetric and positive definite. Show that if

$$A = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$$

with $a \ge c$ has eigenvalues $\lambda_1 \ge \lambda_2 > 0$, then the A_k converges to diag (λ_1, λ_2) .

(2) Show that Jacobi's method for finding eigenvalues of a real symmetric matrix is ultimately quadratically convergent.

Assume that all off-diagonal elements of the matrix A_k are $O(\varepsilon)$, where k enumerates Jacobi sweeps. Show that then all rotations of the next Jacobi sweep are of the form

(´ 1	0					0	
	0	1		•••	•••	•••	0	
	•••	•••		•••		•••		
	0		$1 - O(\varepsilon^2)$	•••	$O(oldsymbol{arepsilon})$	•••	0	
	•••	•••	•••	•••		•••		
	0		$O(oldsymbol{arepsilon})$	•••	$1 - O(\varepsilon^2)$	•••	0	
	0		•••	•••	•••	1	0	
	0	•••		•••		0	1 /	

Then demonstrate that this implies that, after the sweep, all off-diagonal elements of A_{k+1} are $O(\varepsilon^2)$. Assume that all eigenvalues are non-zero and distinct.