Book Problems:

Chapter 5: 6 (Heaviside function: H(x) = 0 for x < 0 and H(x) = 1 for x > 0), 7 (assume appropriate decay of u), 9, 10

Additional Problems:

A1 Consider the inhomogeneous heat equation in the quarter plane

$$u_t = u_{xx} + F(x, t), \quad x > 0, \quad t > 0,$$

 $u(x, 0) = 0, \quad x > 0,$
 $u(0, t) = 0, \quad t > 0,$

where $F \in C_1^2((0,\infty)^2)$, F(0,t) = 0, $F_{xx}(0,t) = 0$, t > 0 and F, F_t , and F_{xx} are bounded.

- (a) Solve the initial-boundary value problem.
- (b) Prove that the proposed solution satisfies the PDE in its appropriate domain, satisfies the initial condition, and satisfies the boundary condition. Rigorously justify every limit taken.
- A2 In this problem, you will study the nonlinear, viscous Burgers equation

$$u_t + uu_x = u_{xx}, \quad x \in \mathbb{R}, \quad t > 0,$$

$$u(x,0) = f(x), \quad x \in \mathbb{R}.$$
 (1)

- (a) Show that if $u(x,t) = -2\phi_x(x,t)/\phi(x,t)$, then $\phi(x,t)$ satisfies the *linear* heat equation, $\phi_t = \phi_{xx}!$ This is known as the Hopf-Cole transformation.
- (b) Use the Hopf-Cole transformation and the solution to the heat equation to provide a (formal) solution to the IVP in Eq. (1).