
APPM 4360/5360 Homework Assignment #3 Spring 2019

Problem #1 (10 points):

(a) Given w1(z) = (z −2)1/3,

(i) Where are the branch points of w1(z); how many Riemann sheets are associated with w1(z); explain.

(ii) If z −2 = r e iθ, −π≤ θ <π, find the branch cut associated with w1(z); explain.

(b) Given w2(z) = log(z + i ),

(i) Where are the branch points of w2(z); how many Riemann sheets are associated with w2(z); explain.

(ii) If z + i = r e iθ, −π/2 ≤ θ < 3π/2, find the branch cut associated with w2(z); explain.

Solution:

(a) (i) w1(z) is a power function; its branch points are z = 2 and z =∞; the power is rational m/l = 1/3, so

l = 3 and there are three Riemann sheets associated with w1(z) (or three different branches of it).

(ii) For −π≤ θ <π, the branch cut is on the real axis to the left of z = 2 i.e. (−∞,2]. This is where the angle

θ is discontinuous and, more importantly, e iθ/3 is also: its values are e iπ/3 and e−iπ/3 at the top and the

bottom of the cut, respectively.

(b) (i) w2(z) is a logarithmic function; its branch points are z =−i and z =∞; there are infinitely many

Riemann sheets associated with w2(z) (or infinitely many different branches of it).

(ii) For −π/2 ≤ θ < 3π/2, the branch cut is on the imaginary axis down from z =−i i.e. (−i∞,−i ]. This is

where the angle θ is discontinuous and therefore Imlog(z + i ) = θ is also: its values are −π/2 and 3π/2 at

the right and the left side of the cut, respectively.

Problem #2 (15 points): Find the branch cut structure associated with the function:

f (z) = log
( z −a

z −b

)

, a < b, a,b real

where we use the bipolar coordinates:

z −a = r1e iθ1 , z −b = r2e iθ2 , with 0 ≤ θ1 < 2π, 0 ≤ θ2 < 2π

Solution:

f (z) = log
( z −a

z −b

)

.

This is a log of a rational (single-valued) function. Therefore the branch points are those where

z −a

z −b
= 0 or

z −a

z −b
=∞,

i.e. z = a and z = b (z =∞ is not a b.p.). Consider principal angles θ1, θ2 s.t.

z −a = r1e iθ1 , z −b = r2e iθ2 , =⇒ log
( z −a

z −b

)

= logr + iΘ= log
r1

r2
+ i (θ1 −θ2).

Then we have (at the top and bottom of x-axis, see pictures in sections 2.2 and 2.3 of the textbook)

θ1 θ2 Θ Region

0 0 0 {(x, y)|x > b, y > 0}

0 π −π {(x, y)|a < x < b, y > 0}

π π 0 {(x, y)|x < a, y > 0}

π π 0 {(x, y)|x < a, y < 0}

2π π π {(x, y)|a < x < b, y < 0}}

2π 2π 0 {(x, y)|x > b, y < 0}
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The above table shows that, with these principal angles, we get the branch cut on the interval [a,b].

Problem #3 (20 points): Find the bounded solution to Laplace equation ∇2T = ∂2T /∂x2 +∂2T /∂y2 = 0 in the

upper half-plane (UHP) (−∞< x <∞, y > 0), with the boundary conditions given on y = 0:

(a)

T (x,0) = {α on x < l , β on x > l }, α,β are real constants

(b)

T (x,0) = {0 on x < l1, α on l1 < x < l2, β on x > l2}, α,β are real constants

Solution:

(a) We consider the (complex) solutions to Laplace equation in the UHP of the form

Ω(z) =C1 log(z − l )+ iC2, z − l = r e iθ,

with real constants C1,C2, so its imaginary part ψ=C1θ+C2 yields a bounded solution of Laplace

equation. Take e.g. principal branch of log with 0 ≤ θ < 2π. We want to identify T =ψ, so we apply the

boundary conditions. For x > l , the angle is θ = 0, and we have T (x,0) =C2 =β; for x < l , the angle is

θ =π, so T (x,0) =C1π+C2 =α. Thus, we find the solution T (x, y) satisfying the given BCs:

T (x, y) =
α−β

π
θ+β=

α−β

π
tan−1 y

x − l
+β.

(b) We take the (complex) solutions to Laplace equation in the UHP of the form

Ω(z) =C1 log(z − l1)+C2 log(z − l2)+ iC3, z − l1 = r1e iθ1 , z − l2 = r2e iθ2 ,

with real constants C1,C2,C3, so its imaginary part ψ=C1θ1 +C2θ2 +C3 yields a bounded solution of

Laplace equation. We take principal branches of both logs with 0 ≤ θ1,θ2 < 2π. We want to identify T =ψ,

so we apply the boundary conditions. For x > l2, the angles are θ1 = θ2 = 0, and we have T (x,0) =C3 =β;

for l1 < x < l2, the angles are θ1 = 0,θ2 =π, so T (x,0) =C2π+C3 =α; for x < l1, the angles are θ1 = θ2 =π,

so T (x,0) = (C1 +C2)π+C3 = 0. Thus, we find the solution T (x, y) satisfying the given BCs:

T (x, y) =−
α

π
θ1 +

α−β

π
θ2 +β=

=−
α

π
tan−1 y

x − l1
+
α−β

π
tan−1 y

x − l2
+β.

Problem #4 (10 points): From the basic definition of complex integration in section 2.4, evaluate
∮

C f (z)d z,

where C is the parameterized unit circle enclosing the origin, C : x(t ) = cos t , y(t ) = sin t where f (z) is given

by:

(a) f (z) = 1+ zz̄2

(b) f (z) = (z −1)/z

Solution: We use that z = e i t , 0 ≤ t < 2π, so

∮

C
f (z)d z =

∫2π

0
f (z(t ))z ′(t )d t =

∫2π

0
f (e i t ) · i e i t d t .

(a) for f (z) = 1+ zz̄2,
∮

C
f (z)d z =

∫2π

0
i (1+e−i t )e i t d t =

(

e i t + i t
)∣

∣

∣

2π

0
= 2πi .
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(b) for f (z) = (z −1)/z,
∮

C
f (z)d z =

∫2π

0
i (1−e−i t )e i t d t =−2πi .

Problem #5 (15 points): Evaluate
∮

C
d z

z−a
where C is the unit circle for a) |a| < 1, b) |a| > 1; c) What can be said

when |a| = 1?

Solution: (a) Using the cut contour argument, the contour C can be deformed to a circle C0 of (small) radius ǫ

around a. Then, on C0, z −a = ǫe i t , 0 ≤ t < 2π, and

∮

C

d z

z −a
=

∮

C0

d z

z −a
=

∫2π

0

iǫe i t d t

ǫe i t
= 2πi

(b) Since the integrand is analytic inside C , by Cauchy theorem, the integral is zero.

(c) If |a| = 1, then it is on the contour C , and the integral is undefined as it stands.

Problem #6 (15 points): Consider the integral
∫b

0 (1/z1/2)d z, b > 0. Let z1/2 have a branch cut along the positive

real axis. Show that the value of the integral obtained by integrating along the top half of the cut is exactly minus

that obtained by integrating along the bottom half of the cut. What is the difference between taking the

principal versus the second branch of z1/2?

Solution: Let z = r e iθ, then 0 ≤ θ < 2π for the principal branch of z1/2. Along the top of the cut, θ = 0, and along

the bottom of the cut, θ = 2π. Integrating along the top, we get

∫b

0

1

z1/2
d z =

∫b

0

1

r 1/2
dr = 2b1/2,

while along the bottom we get

∫b

0

1

z1/2
d z =

∫b

0

1

r 1/2e2iπ/2
e2iπdr =−2b1/2,

as was to be shown. Taking the second branch, we have θ = 2π on the top of the cut and θ = 4π on the bottom of

the cut. Then, similar calculations give −2b1/2 when integrating over the top and +2b1/2 when integrating over

the bottom.

Problem #7 (15 points):

(a) Evaluate
∮

C f (z)d z using partial fractions for C = {z(t ) = e i t : 0 ≤ t ≤ 2π (the unit circle centered at the

origin) for the following:

f (z) =
1

(z −1)(z −3)
.

(b) Discuss how to evaluate
∫

C
ez

z
d z where C is a simple closed contour enclosing the origin; explain your

reasoning. Hint: use eq. 1.2.19 in the text as necessary.

(c) Evaluate
∫

C

p
z +2d z where C is the unit circle; explain your reasoning.

Solution: Here, we use partial fractions and the fact that

∮

C
(z −a)md z =







0, a ∉ D

0, a ∈ D, m 6= −1

2πi , a ∈ D, m =−1

where D is the region enclosed by C .
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(a) As it stands, the singular point z = 1 is on the integration contour, therefore the integral does not exist.

If we take instead e.g.

f (z) =
1

(z −1/2)(z −3)
=

1

2.5(z −3)
−

1

2.5(z −1/2)
,

we have that
∮

C
f (z)d z = 0−

2πi

2.5
=−

4πi

5
,

because the pole at z = 3 does not contribute.

(b) We expand ez in series as

ez =
∞
∑

n=0

zn

n!
,

then
∫

C

ez

z
d z =

∞
∑

n=0

1

n!

∫

C
zn−1d z = 2πi ,

where only the term of the sum with n = 0 contributes. The others integrate to zero by Cauchy theorem.

The n = 0 term is evaluated using the deformed contour argument reducing it to the integral over a

(small) circle around z = 0.

(c) Consider an analytic branch of
p

z +2 such that branch cut joining −2 and ∞ does not cross the unit

circle centered at z = 0. Then
p

z +2 is analytic inside C and, by Cauchy theorem,
∫

C

p
z +2d z = 0.

Extra-Credit Problem #8 (10 points): Consider IR =
∫

CR

e i z

z2 d z where CR is the semicircle of radius R in the

upper half-plane with the endpoints (−R,0) and (R,0) (CR is open, it does not include the x-axis). Show that

limR→∞ IR = 0.

Solution: We have CR = {z = Re iθ,0 ≤ θ ≤π} and use the inequalities

|IR | =
∣

∣

∣

∣

∫

CR

e i z

z2
d z

∣

∣

∣

∣

≤
∫

CR

|e i z |
|z|2

|d z| =
∫π

0

|e i R(cosθ+i sinθ)|
R2

|Ri e iθ|dθ =

=
∫π

0

e−R sinθ

R
dθ ≤

1

R

∫π

0
dθ =

π

R
→R→∞ 0,

which proves that limR→∞ IR = 0.
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