
APPM 4/5720: Computational Bayesian Statistics, Spring 2018

Solutions to Problem Set Three

1. Let Vy denote the variance-covariance matrix for ~Y . Note that Vy is the upper left k×k block
of V .

Take any k × 1 vector ~y 6= ~0. We want to show that

~ytVy~y > 0.

Let ~x be the n× 1 vector whose first k elements are the elements of ~y and whose last n− k
elements are filled out with zeros. Then Note that

~ytVy~y = ~xtV ~x > 0

with the last inequality coming from the fact that V is positive definite.

2. “Noninformative priors” are not well defined. I will use flat (and therefore in this case
improper) priors. You may have used Jeffreys priors or something else! In this solution, I will
call the unrounded measurements y1, y2, . . . , y5 instead of z1, z2, . . . , z5 since the latter look
more like standard normal random variables.

(a) The likelihood is
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I will take the priors on µ and σ2 to be

f(µ) = 1, −∞ < µ <∞

f(σ2) = 1 σ2 > 0.

The posterior is then

f(µ, σ2|~x) ∝ f(~x|µ, σ2) · f(µ) · f(σ2)
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where s2 is the sample variance

s2 =
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x2
i − (

∑
xi)

2/5
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=
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i − 5x2

4
.

Which gives us the posteriors

σ2|~x ∼ IG(3/2, (n− 1)s2/2) = IG(3/2, 2s2)

and
µ|σ2, ~x ∼ N(x, σ2/5).

Note that we have actual data and have that x = 10.4 and s2 = 1.3. So,

σ2|~x ∼ IG(1.5, 2.6)

and
µ|σ2, ~x ∼ N(10.4, σ2/5).

(b) Now, the likelihood is

f(~|µ, σ2) = P (X1 = x1, X2 = x2, . . . , X5 = x5|µ, σ2)

indep
=

∏5
i=1 P (Xi = xi|µ, σ2)

=
∏5
i=1 P (xi − 0.5 < Yi < xi + 0.5|µ, σ2)

where Yi is the unrounded measurement corresponding to Xi.

Standardizing, we get
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Using the same flat priors we used in part (a), we have that the posterior distribution
pdf for µ and σ2 is

f(µ, σ2|~x) ∝
5∏
i=1

[
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σ2

)
− Φ
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)]

for −∞ < µ <∞, and σ2 > 0.

(c) I’ll graph them in R. We can definitely see similarities! The truncated one looks like it
is “leaning” and we had to go out a lot farther in σ2 to see it tail off.

> mu <- seq(5, 15, length= 30)

> sigmasq <-seq(0.1,2,length=30)

> alpha<-1.5

> beta<-2*1.3

> xbar<-10.4

> f <- function(mu,sigmasq,alpha,beta,xbar) {

> hold1<-(1/gamma(alpha))*(beta^alpha)*(sigmasq^(-alpha-1))*

> exp(-beta/sigmasq)

> hold2<-((2*pi*sigmasq/5)^(-5/2))*exp(-(1/(2*sigmasq/5))*(mu-xbar)^2)



> hold1*hold2

> }

>

> z <- outer(mu, sigmasq, f,alpha,beta,xbar)

> z[is.na(z)] <- 1

> persp(mu, sigmasq, z, theta = 30, phi = 30, expand = 0.5,

> ticktype="detailed", col = "lightblue")

Figure 1: Posterior of 2a

> mu <- seq(5, 15, length= 30)

> sigmasq <-seq(0.1,2,length=30)

> x<-c(10,10,12,11,9)

> f<-function(mu,sigmasq,x){

> # Note: Using "prod" would have been slicker but

> # caused problems when combined with "outer"

> hold1<-pnorm((x[1]+0.5-mu)/sqrt(sigmasq))-pnorm((x[1]-0.5-mu)/

> sqrt(sigmasq))

> hold2<-pnorm((x[2]+0.5-mu)/sqrt(sigmasq))-pnorm((x[2]-0.5-mu)/

> sqrt(sigmasq))

> hold3<-pnorm((x[3]+0.5-mu)/sqrt(sigmasq))-pnorm((x[3]-0.5-mu)/

> sqrt(sigmasq))

> hold4<-pnorm((x[4]+0.5-mu)/sqrt(sigmasq))-pnorm((x[4]-0.5-mu)/

> sqrt(sigmasq))

> hold5<-pnorm((x[5]+0.5-mu)/sqrt(sigmasq))-pnorm((x[5]-0.5-mu)/

> sqrt(sigmasq))

> hold1*hold2*hold3*hold4*hold5

> }

> z <- outer(mu, sigmasq, f,x)

> z[is.na(z)] <- 1

> persp(mu, sigmasq, z, theta = 30, phi = 30, expand = 0.5,

> ticktype="detailed", col = "lightblue")

(d) My clarifying parenthetical comment was anything but clarifying. What I was trying to
ask (and what I think Gelman was trying to ask) is that we draw values from f(~y|~x).



Figure 2: Posterior of 2b

Figure 3: Posterior of 2b: Extended σ2 Axis



Let’s discuss this first in one dimension. That, is let us try to draw values y1 from
f(y1|x1). For simplicity, I will refer to x1 and y1 as x and y. We have x = 10 and y is
the unrounded version of x. Therefore, y is a normal random variable that takes values
between 9.5 and 10.5.

Note that

f(y|x) =

∫ ∫
f(y, µ, σ2|x) dµdσ2.

Since I don’t want to integrate µ and σ2 out, I will draw y’s from f(y, µ, σ2|x) and then
get draws from the marginal distribution in y by ignoring the output for µ and σ2.

Note that
f(y, µ, σ2|x) = f(y|µ, σ2, x) · f(µ, σ2|x).

To draw from f(y, µ, σ2|x), we must

• First draw (µ, σ2) from f(µ, σ2|x).

• Then draw y from f(y|µ, σ2, x).

We’re going to have to pick a prior here. I’m going to use the one from part (a).
That is, I’m going to simulate σ2 from the IG(1.5, 2.6) and then simulate µ from the
N(10.4, σ2/5).

In R, we can draw from this normal inverse gamma distribution as follows. (We will
draw 100, 000 pairs all at once.)

> n<-100000

> alpha<-1.5

> beta<-2.6

> mumean<-10.4

> sigmasq<-1/rgamma(n,alpha,beta)

> mu<-sqrt(sigmasq/5)*rnorm(n,0,1)+mumean

For each (µ, σ2) pair, we must draw a y from the N(µ, σ2) distribution, restricted to the
domain (x− 0.5, x+ 0.5) = (9.5, 10.5). The pdf is

f(y|µ, σ2, x) ∝ 1√
2π

exp[− 1

2σ2
(y − µ)2] I(9.5,10.5)(y). (1)

(The x came in in defining the distribution of µ and σ2 and also in defining that indicator.
Once they are determined, we are done with x.)

We will be drawing y from a little piece of the normal distribution which will look like
this assuming µ < 9.5. (If µ > 10.5 it will instead be increasing, and if 9.5 < µ < 10.5,
it will be like the top of a normal curve with a maximum at µ.)

Figure 4: One Example of f(y|µ, σ2, 10) (Assuming µ < 9.5.)



Properly normalized so that it integrates to 1, (1) becomes

f(y|µ, σ2, x) =

[
Φ
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10.5− µ

σ

)
− Φ

(
9.5− µ
σ
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2σ2
(y − µ)2] I(9.5,10.5)(y). (2)

We can simulate values from (2) using the accept/reject algorithm with proposal density
being uniform over (9.5, 10.5). That is, we will take g (notation from the accept/reject
algorithm) to be the flat line at the high point:

g(y) =
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Φ
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)
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(
9.5− µ
σ
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exp[− 1

2σ2
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Then
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[
Φ
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σ

)
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exp[− 1
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=
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[
Φ
(
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σ

)
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σ

)]−1
exp[− 1

2σ2 (9.5− µ)2].

The normalized version of g is h(y) = I(9.5,10.5)(y), which is the pdf for the uniform
distribution over (9.5, 10.5).

The accept/reject algorithm says

• Draw W ∼ unif(9.5, 10.5).

• Draw U ∼ unif(0, 1).

• If U ≤ f(W )
ch(W ) = f(W )

g(W ) , accept W as a draw from f(y|µ, σ2, 10). Set Y = W .
Otherwise, reject and return to first bullet.

Full code for drawing from f(y|µ, σ2, x) taking into account the different shapes we can
get for it depending on µ is given below in R.

>y1<-rep(0,n)

>for(i in 1:n){

> accept<-F

> while(accept == F){

> w<-runif(1)+9.5

> u<-runif(1)

>

> if(mu[i]< 9.5){

> ratio<-exp(-(1/(2*sigmasq[i]))*((w-mu[i])^2-(9.5-mu[i])^2))

> } else if (mu[i] > 10.5){

> ratio<-exp(-(1/(2*sigmasq[i]))*((w-mu[i])^2-(10.5-mu[i])^2))

> } else{

> ratio<-exp(-(1/(2*sigmasq[i]))*((w-mu[i])^2))

> }

>

> if(u<=ratio){

> y1[i]<-w

> accept<-T

> }

> }

> }

>}

A histogram of y = y1 is shown below. The sample mean is 10.02, which is close to x1.
However, the posterior mean of 10.4 is pulling values of y1 up more towards 10.4!



Figure 5: 100,000 Draws from f(y1|x1)

3. The target pdf is
f(x) = 12x2(1− x) I(0,1)(x).

It is easy to check that the maximum occurs at x = 2/3 and that the maximum is 16/9.

(a) Here, we can take g(x) = 16
9 I(0,1)(c). Then c = 16/9 and h(x) = I(0,1)(x).

The f/g ratio for the accept reject algorithm will be 12x2(1− x)/(16/9) = 27
4 x

2(1− x)

Here is the R-Code:

> n<-100000

> x<-rep(0,n)

> for(i in 1:n){

+ accept<-F

+ while(accept == F){

+ y<-runif(1)

+ u<-runif(1)

+ ratio<-(27/4)*(y^2)*(1-y)

+ if(u <= ratio){

+ x[i]<-y

+ accept <-T

+ }

+ }

+ }

Here is code for the histogram which is pictured below. The mean time to acceptance
was 1.78 with a maximum time of 16. A histogram of time to acceptance is also given
below.

> br<-seq(0,1,0.1)

> hist(x,prob=T,breaks=br)

> y<-seq(0,1,0.001)

> f<-12*(y^2)*(1-y)

> lines(y,f)



Figure 6: Problem 3a

(b) One (non-optimal) piecewise linear bounding function is given by

g(x) =

{
3x , 0 ≤ x ≤ 2/3
−3x+ 4 , 2/3 ≤ x ≤ 1.

This is depicted below.

Figure 7: Problem 3a

Since g integrates to 7/6, we can take

h(x) =
6

7
g(x) =

{
18
7 x , 0 ≤ x ≤ 2/3
−18

7 x+ 24
7 , 2/3 ≤ x ≤ 1.

The associated cdf is

H(x) =

{
9
7x

2 , 0 ≤ x ≤ 2/3
4
7 −

9
7x

2 + 24
7 x−

12
7 , 2/3 ≤ x ≤ 1

=

{
9
7x

2 , 0 ≤ x ≤ 2/3
−9

7x
2 + 24

7 x−
8
7 , 2/3 ≤ x ≤ 1

This can be inverted in pieces to give so that we may draw from the distribution with
cdf H as follows. We draw U ∼ unif(0, 1).

• If U < 9
7

(
2
3

)2
= 4

7 , plug the uniform into x =
√

7
9U .

• Otherwise, plug U into x =
−24+
√

242−36(8+7U)

−18 .

The acceptance ratio for the accept-reject algorithm is

f(x)/g(x) =

{
4x(1− x) , 0 ≤ x ≤ 2/3
12x2(1−x)
−3x+4 , 2/3 ≤ x ≤ 1

Overall, the R code is as follows. (This time I have included keeping track of the time
to acceptance as well.)



n<-100000

x<-rep(0,n)

time<-rep(0,n)

for(i in 1:n){

accept<-F

hold<-0

while(accept == F){

hold<-hold+1

w<-runif(1)

if(w <= 2/3){

y<-sqrt(7*w/9)

} else{

y<- (-24+sqrt(24^2-36*(8+7*w)))/(-18)

}

u<-runif(1)

if(y <=2/3){

ratio<-4*y*(1-y)

} else{

ratio<-12*(y^2)*(1-y)/(-3*y+4)

}

if(u <= ratio){

x[i]<-y

time[i]<-hold

accept <-T

}

}

}

The plots are uninteresting since the results look exactly the same and the histogram
for time is boring either way. However, the mean time dropped from 1.78 to 1.16 and
the max dropped from 16 to 6! Yay!

4. First we will show that marginals from the Dirichlet distribution are again Dirichlet. I won’t
bother using the posterior parameters yet.

Suppose that (θ1, θ2, . . . , θk) ∼ Dirichlet(α1, α2, . . . , αk). Then the joint pdf is

f(θ1, θ2, . . . , θk) =
Γ(
∑k

i=1
αi)∏k

i=1
Γ(αi)

θα1−1
1 · θα2−1

2 · · · θαk−1
k

=
Γ(
∑k

i=1
αi)∏k

i=1
Γ(αi)

θα1−1
1 · θα2−1

2 · · · θαk−1−1
k−1 (1− θ1 − · · · − θk−1)αk−1

Really, we can think of this as a joint pdf for (θ1, θ2, . . . , θk−1) since θk is “locked in”. So, we
will try to marginalize out θk−1:

Γ(
∑k
i=1 αi)∏k

i=1 Γ(αi)

∫
θα1−1

1 · θα2−1
2 · · · θαk−1−1

k−1 (1− θ1 − · · · − θk−1)αk−1 dθk−1

Γ(
∑k
i=1 αi)∏k

i=1 Γ(αi)
θα1−1

1 · θα2−1
2 · · · θαk−2−1

k−2

∫
θ
αk−1−1
k−1 (1− θ1 − · · · − θk−1)αk−1 dθk−1

The integrals go from 0 to 1− θ1 − · · · − θk−2. (It looked horrible written in there!)

Let c = θ1 + θ2 + · · ·+ θk−2. Then we want to integrate∫
θ
αk−1−1
k−1 (1− c− θk−1)αk−1 dθk−1



Consider the substitution θk−1 = (1 − c)u. Note that u goes from 0 to 1. Also, dθk−1 =
(1− c) du. The integral becomes∫ 1

0
[(1− c)u]αk−1−1[1− c− (1− c)u]αk−1 (1− c) du

= (1− c)αk−1+αk−1
∫ 1

0
uαk−1−1(1− u)αk−1 du

(1− c)αk−1+αk−1B(αk−1, αk)

(1− c)αk−1+αk−1 Γ(αk−1)Γ(αk)

Γ(αk−1 + αk)
.

Putting it all together, the marginal for (θ1, θ2, . . . , θk−2) is

f(θ1, θ2, . . . , θk−2) =
Γ(
∑k
i=1 αi)∏k

i=1 Γ(αi)
θα1−1

1 ·θα2−1
2 · · · θαk−2−1

k−2 ·(1−θ1−· · ·−θk−2)αk−1+αk−1 Γ(αk−1)Γ(αk)

Γ(αk−1 + αk)

=
Γ(
∑k
i=1 αi)∏k−2

i=1 Γ(αi)Γ(αk−1 + αk)
θα1−1

1 · θα2−1
2 · · · θαk−2−1

k−2 · (1− θ1 − · · · − θk−2)αk−1+αk−1

So, we see that (recall that θk−1 is in there but locked in and represented as 1−θ1−· · ·−θk−2))

(θ1, θ2, . . . , θk−1) ∼ Dirichlet(α1, α2, . . . , αk−1, αk−1 + αk).

Continuing down (formal induction argument anyone?), we get that

(θ1, θ2) ∼ Dirichlet(α1,
k∑
i=2

αi).

Going back to “posterior land”, (I just worked so far with a generic Dirichlet and not the
posterior Dirichlet) we have that

(θ1, θ2) ∼ Dirichlet(α1 + x1,
k∑
i=2

(αi + xi)).

However, since θ2 = 1− θ1, we have that θ = θ1 ∼ Beta(α1 + x1,
∑k
i=2(αi + xi)).

This is not going to give us the desired result in part (b). So, i think Gelman meant for us
to really find that

(θ1, θ2, θ3) ∼ Dirichlet(α1 + x1, α2 + x2,
k∑
i=3

(αi + x3)),

in which case we can find the marginal posterior for θ = θ1/(θ1 + θ2) but using the Jacobian
method to find the joint distribution of this and the denominator. You can then marginalize
out the denominator and should find that

θ|~x ∼ Beta(α1 + x1, α2 + x2).

Note that we can get this by multiplying thr suggested binomial distribution and a
Beta(α1, α2) prior.

Ug. Worst homework ever...


