Book Problems:

Chapter 4: 5, 8, 10

Additional Problems:

A1 Consider the moving initial/boundary value problem (IBVP) for the wave equation with unit wave speed

$$
\begin{aligned}
u_{t t}-u_{x x} & =0, \quad x>\gamma(t), \quad t>0, \\
u(x, 0) & =f(x), \quad x>0, \\
u_{t}(x, 0) & =g(x), \quad x>0, \\
u(\gamma(t), t) & =h(t), \quad t>0 .
\end{aligned}
$$

Assume that $f \in C^{2}(\gamma(0), \infty), g \in C^{1}(\gamma(0), \infty), h \in C^{2}(0, \infty)$, and $\gamma \in C^{1}(0, \infty)$. Also, assume $\gamma(0)=0$.
(a) Why is the IBVP with $\dot{\gamma}(t)>1$ for some $t>0$ ill-posed?
(b) Why is the IBVP with $\dot{\gamma}(t)<-1$ for some $t>0$ ill-posed?
(c) Suppose $u(x, t)$ is compactly supported in x. Determine the evolution of the total kinetic and potential energy $E=\frac{1}{2} \int_{\gamma(t)}^{\infty}\left(u_{t}^{2}+u_{x}^{2}\right) \mathrm{d} x$. Is this quantity conserved?
(d) Solve the IBVP using the divergence theorem for the vector field $\left(u_{x},-u_{t}\right)$ on the domain of dependence for an arbitrary point $(x, t), t>0, x>\gamma(t)$. Check your result by taking $\gamma(t)=0$ and comparing with the result from class.
(e) Suppose the boundary moves with a constant speed and emits a signal with frequency $\omega>0: \gamma(t)=s t,|s|<1, f(x)=g(x)=0$, and $h(t)=\cos (\omega t)$. Find the solution to the IBVP. What is the signal frequency received by an observer standing at the location x_{0} where $s t<x_{0}<t$? The change in frequency is known as the Doppler shift.

A2 Prove that $C^{2}(\mathbb{R} \times[0, \infty))$ solutions of the initial value problem for the damped wave equation with boundary with damping constant $\mu>0$

$$
\begin{aligned}
u_{t t}+\mu u_{t}-c^{2} u_{x x} & =0, \quad x>0, \quad t>0 \\
u(x, 0) & =f(x), \quad x>0 \\
u_{t}(x, 0) & =g(x), \quad x>0 \\
u(0, t) & =h(t), \quad t>0
\end{aligned}
$$

has a unique solution. Note: You are not asked to solve this problem!

