APPM 5600: Homework \#3 Due in class Wednesday October 4

1 Consider the iteration $x_{k+1}=g\left(x_{k}\right)$ with

$$
g(x)=x^{2}+x-\frac{1}{4}
$$

Find the fixed points, state which are convergent, and give the order of convergence (e.g. linear, quadratic, etc). Justify your answers.

2 Consider the fixed-point iterations

$$
\begin{gathered}
x_{k+1}=g\left(x_{k}\right) \text { and } \\
x_{k+1}=G\left(x_{k}\right)=g\left(g\left(x_{k}\right)\right)-\frac{\left(g\left(g\left(x_{k}\right)\right)-g\left(x_{k}\right)\right)^{2}}{g\left(g\left(x_{k}\right)\right)-2 g\left(x_{k}\right)+x_{k}}
\end{gathered}
$$

The second method (G) is Steffensen's method - repeated use of Aitken extrapolation.
(a) Show that if $G(\alpha)=\alpha$ then $g(\alpha)=\alpha$.
(b) Show that if $g(\alpha)=\alpha$ and $g^{\prime}(\alpha)$ exists and is not 1 , then $G(\alpha)=\alpha$.
(c) Consider the iterative function $g(x)=x^{2}+x-10^{-2}$, with fixed points $\pm 10^{-1}$. For each fixed point, state whether the iterations (using g and G) converge, and give the rate. Justify your answers.

3 The function

$$
f(x)=\left\{\begin{array}{cc}
0 & x=1 \\
e^{-\frac{1}{(1-x)^{2}}} & x \neq 1
\end{array}\right.
$$

is C^{∞} and has a single root at $x=1$. The root has infinite multiplicity. Apply a root finding method of your choice to this function (i.e. write some code). Describe and explain the behavior.

4 Consider a discrete dynamical system of the form $x_{k+1}=g\left(x_{k}\right)$ where g is continuously differentiable and maps the interval $[a, b]$ to itself. Suppose that there is an equilibrium $\alpha=g(\alpha)$, but that it is unstable $g^{\prime}(\alpha)>1$. You can't compute this fixed point by forward iterations, but you want to know precisely where it is.
(a) Describe a method to compute the unstable equilibrium (you may assume that you have a 'close enough' guess as to its location).
(b) Apply your method to compute the unstable fixed point of the map $x_{k+1}=\sin ^{2}\left(\pi x_{k}\right)$ on the interval $[0,1]\left(\right.$ here $\sin ^{2}$ means $(\sin (\cdot))^{2}$ not $\left.\sin (\sin (\cdot))\right)$. Give your answer to 6 digits.

