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Solutions to Problem Set Two

1. Let ~X1, ~X2, . . . , ~Xm be a random sample of m vectors each of length k from the multinomial
distribution with parameters n and θ1, θ2, . . . , θk.

The joint pdf is
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The posterior is

f(θ|~~x) ∝ f(~~x|θ) · f(θ)
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which is another Dirichlet distribution with parameters

α∗j =
m∑
i=1

xij + αj

for j = 1, 2, . . . , k.

Not only is this a conjugate prior but it is a natural conjugate prior as well!

2. (a) If Yi and Yj are independent, they must have covariance 0. We will show that their
covariance is greater than 0, so they must be dependent. (Note: If we computed
their covariance and got zero, we would not be able to make a conclusion about de-
pendence/independence!)

For i 6= j,

Cov(Yi, Yj) = Cov(Xi + Z,Xj + Z)

= Cov(Xi, Xj) + Cov(Xi, Z) + Cov(Z,Xj) + Cov(Z,Z).

The first three terms are zero by independence of Xi with Xj and of each with Z. Thus,

Cov(Yi, Yj) = Cov(Z,Z) = V ar(Z) > 0.

(The only way that V ar(Z) could equal 0 is if it were a constant with probability 1.)

(b) I’m going to do this in all discrete notation. That is, I’m going to assume that the Xi

and Z are discrete. You may assume either or both are continuous or make no such
assumptions and use Riemann-Stiltjes integrals!

Let π = (π1, π2, . . . , πn) be any permutation of {1, 2, . . . , n}. Then,

P (Y1 = yπ1 , Y2 = yπ2 , . . . , Yn = yπn)

=
∑
z P (Y1 = yπ1 , Y2 = yπ2 , . . . , Yn = yπn |Z = z) · P (Z = z)



=
∑
z P (X1 + Z = yπ1 , X2 + Z = yπ2 , . . . , Xn + Z = yπn |Z = z) · P (Z = z)

=
∑
z P (X1 = yπ1 − z,X2 = yπ2 − z, . . . ,Xn = yπn − z|Z = z) · P (Z = z)

By independence of the Xi from Z, this is∑
z

P (X1 = yπ1 − z,X2 = yπ2 − z, . . . ,Xn = yπn − z) · P (Z = z)

Since the Xi are iid, we have that

P (X1 = yπ1−z,X2 = yπ2−z, . . . ,Xn = yπn−z) = P (X1 = yπ1−z)·P (X1 = yπ2−z) · · ·P (X1 = yπn−z)

which is clearly symmetric in the arguments yπ1 , yπ2 , . . . , yπn .

Unraveling the steps, we have that

P (Y1 = yπ1 , Y2 = yπ2 , . . . , Yn = yπn) = P (Y1 = y1, Y2 = y2, . . . , Yn = yn).

Since the permutation was arbitrary, Y1, Y2, . . . , Yn are exchangeable.

3. Here is some R-code:

> lambda<-1.7

> u<-runif(10000)

> x<-(-1/lambda)*log(1-u)

> min(x)

[1] 5.788838e-05

> max(x)

[1] 5.728264

> br<-seq(0,5.8,0.1)

> hist(x,prob=T,breaks=br)

> y<-seq(0,5,0.001)

> f<-lambda*exp(-lambda*y)

> lines(y,f)

4. In the proof of deFinetti’s Theorem, we saw that the cdf F used in the statement of the
theorem was the limiting cdf of Xn. So, we must figure out what prior to use to get the
relationship

P (X1 = 1, X2 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn=1) =

∫ 1

0
θk(1− θ)k dF (θ).



Note that the probability on the left-hand side is
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Inspired by a similar computation in class, we are going to try to write this as a Beta function.
For that we will need factorials. In order to see the terms in the numerators and denominators
as increasing by 1 unit like a factorial, we will multiply the top and bottom of each fraction
by 1/c. This gives us
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where R′0 = R0/c and W ′0 = W0/c.

Now this looks exactly like the problem we did in class with R0 replaced by R′0 and W0

replaced by W ′0! Following that example, we see that

Xn
d→ X

where X ∼ Beta(R′0,W
′
0) = Beta(R0/c,W0/c) .

5. (a) No, a conjugate prior does not always exist. An example is the two-parameter Weibull
distribution. (This is on your table of distributions with three parameters. Set α = 0 to
get the two-parameter version.)

A proof that this does not have a conjugate prior is given in

Soland, R. (1969), Bayesian Analysis of the Weibull Process With Unknown Scale and
Shape Parameters, IEEE Transactions on Reliability Analysis, 18, 181-184.

(b) For a one-parameter exponential family distribution, the joint pdf has the form

f(~x|θ) = a(θ)b(~x) exp[c(θ)d(~x)].

As a function of θ, this is proportional to

a(θ) exp[c(θ)d(~x)].

The natural conjugate prior would be

f(θ) ∝ a(θ) exp[αc(θ)]

for some hyperparameter α. HOWEVER, this is not guaranteed to be a proper prior.
(i.e. It is not guaranteed to be integrable with respect to θ.) For more on conditions
that will give a proper conjugate prior, see

Diaconis, P., and Ylvisaker, D. (1979). Conjugate priors for exponential families. Annals
of Statistics, 7, 269-281.


