APPM 4/5720: Computational Bayesian Statistics, Spring 2018 Solutions to Problem Set Two

1. Let $\vec{X}_{1}, \vec{X}_{2}, \ldots, \vec{X}_{m}$ be a random sample of m vectors each of length k from the multinomial distribution with parameters n and $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$.
The joint pdf is

$$
\begin{aligned}
f(\overrightarrow{\vec{x}} \mid \theta) & =\prod_{i=1}^{m} f\left(\vec{x}_{i} \mid \theta\right) \\
& =\prod_{i=1}^{m} \frac{n!}{x_{i 1}!x_{i 2}!\cdots x_{i k}^{!}} \theta_{1}^{x_{i 1}} \theta_{2}^{x_{i 2}} \cdots \theta_{k}^{x_{i k}} \\
& =\left(\prod_{i=1}^{m} \frac{n!}{x_{i 1}!x_{i 2}!\cdots x_{i k}^{!}}\right) \cdot \theta_{1}^{\sum_{i=1}^{m} x_{i 1}} \theta_{2}^{\sum_{i=1}^{m} x_{i 2} \cdots \theta_{k}^{\sum_{i=1}^{m} x_{i k}} .}
\end{aligned}
$$

The posterior is

$$
\begin{aligned}
f(\theta \mid \overrightarrow{\vec{x}}) & \propto f(\overrightarrow{\vec{x}} \mid \theta) \cdot f(\theta) \\
& =\theta_{1}^{\sum_{i=1}^{m} x_{i 1}} \theta_{2}^{\sum_{i=1}^{m} x_{i 2}} \cdots \theta_{k}^{\sum_{i=1}^{m} x_{i k}} \cdot \theta_{1}^{\alpha_{1}-1} \theta_{2}^{\alpha_{2}-1} \cdots \theta_{k}^{\alpha_{k}-1} \\
& =\theta_{1}^{\sum_{i=1}^{m} x_{i 1}+\alpha_{1}-1} \theta_{2}^{\sum_{i=1}^{m} x_{i 2}+\alpha_{2}-1} \cdots \theta_{k}^{\sum_{i=1}^{m} x_{i k}+\alpha_{k}-1}
\end{aligned}
$$

which is another Dirichlet distribution with parameters

$$
\alpha_{j}^{*}=\sum_{i=1}^{m} x_{i j}+\alpha_{j}
$$

for $j=1,2, \ldots, k$.
Not only is this a conjugate prior but it is a natural conjugate prior as well!
2. (a) If Y_{i} and Y_{j} are independent, they must have covariance 0 . We will show that their covariance is greater than 0 , so they must be dependent. (Note: If we computed their covariance and got zero, we would not be able to make a conclusion about dependence/independence!)
For $i \neq j$,

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{i}, Y_{j}\right) & =\operatorname{Cov}\left(X_{i}+Z, X_{j}+Z\right) \\
& =\operatorname{Cov}\left(X_{i}, X_{j}\right)+\operatorname{Cov}\left(X_{i}, Z\right)+\operatorname{Cov}\left(Z, X_{j}\right)+\operatorname{Cov}(Z, Z)
\end{aligned}
$$

The first three terms are zero by independence of X_{i} with X_{j} and of each with Z. Thus,

$$
\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\operatorname{Cov}(Z, Z)=\operatorname{Var}(Z)>0 .
$$

(The only way that $\operatorname{Var}(Z)$ could equal 0 is if it were a constant with probability 1.)
(b) I'm going to do this in all discrete notation. That is, I'm going to assume that the X_{i} and Z are discrete. You may assume either or both are continuous or make no such assumptions and use Riemann-Stiltjes integrals!
Let $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ be any permutation of $\{1,2, \ldots, n\}$. Then,

$$
\begin{aligned}
& P\left(Y_{1}=y_{\pi_{1}}, Y_{2}=y_{\pi_{2}}, \ldots, Y_{n}=y_{\pi_{n}}\right) \\
= & \sum_{z} P\left(Y_{1}=y_{\pi_{1}}, Y_{2}=y_{\pi_{2}}, \ldots, Y_{n}=y_{\pi_{n}} \mid Z=z\right) \cdot P(Z=z)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{z} P\left(X_{1}+Z=y_{\pi_{1}}, X_{2}+Z=y_{\pi_{2}}, \ldots, X_{n}+Z=y_{\pi_{n}} \mid Z=z\right) \cdot P(Z=z) \\
& =\sum_{z} P\left(X_{1}=y_{\pi_{1}}-z, X_{2}=y_{\pi_{2}}-z, \ldots, X_{n}=y_{\pi_{n}}-z \mid Z=z\right) \cdot P(Z=z)
\end{aligned}
$$

By independence of the X_{i} from Z, this is

$$
\sum_{z} P\left(X_{1}=y_{\pi_{1}}-z, X_{2}=y_{\pi_{2}}-z, \ldots, X_{n}=y_{\pi_{n}}-z\right) \cdot P(Z=z)
$$

Since the X_{i} are iid, we have that
$P\left(X_{1}=y_{\pi_{1}}-z, X_{2}=y_{\pi_{2}}-z, \ldots, X_{n}=y_{\pi_{n}}-z\right)=P\left(X_{1}=y_{\pi_{1}}-z\right) \cdot P\left(X_{1}=y_{\pi_{2}}-z\right) \cdots P\left(X_{1}=y_{\pi_{n}}-z\right)$
which is clearly symmetric in the arguments $y_{\pi_{1}}, y_{\pi_{2}}, \ldots, y_{\pi_{n}}$.
Unraveling the steps, we have that

$$
P\left(Y_{1}=y_{\pi_{1}}, Y_{2}=y_{\pi_{2}}, \ldots, Y_{n}=y_{\pi_{n}}\right)=P\left(Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{n}=y_{n}\right)
$$

Since the permutation was arbitrary, $Y_{1}, Y_{2}, \ldots, Y_{n}$ are exchangeable.
3. Here is some R-code:
lambda<-1.7
> u<-runif(10000)
$>\mathrm{x}<-(-1 / \operatorname{lambda}) * \log (1-\mathrm{u})$
$>\min (x)$
[1] $5.788838 \mathrm{e}-05$
$>\max (x)$
[1] 5.728264
> br<-seq ($0,5.8,0.1$)
$>$ hist (x, prob=T,breaks=br)
$>y<-s e q(0,5,0.001)$
$>\mathrm{f}<-1$ ambda*exp (-lambda*y)
> lines(y,f)

4. In the proof of deFinetti's Theorem, we saw that the cdf F used in the statement of the theorem was the limiting cdf of \bar{X}_{n}. So, we must figure out what prior to use to get the relationship

$$
P\left(X_{1}=1, X_{2}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n=1}\right)=\int_{0}^{1} \theta^{k}(1-\theta)^{k} d F(\theta) .
$$

Note that the probability on the left-hand side is

$$
\frac{R_{0}}{R_{0}+W_{0}} \cdot \frac{R_{0}+c}{R_{0}+W_{0}+c} \cdots \frac{R_{0}+c(k-1)}{R_{0}+W_{0}+c(k-1)} \cdot \frac{W_{0}}{R_{0}+W_{0}+c k} \cdots \frac{W_{0}+c}{R_{0}+W_{0}+c(k+1)} \cdots \frac{W_{0}+c(n-k-1)}{R_{0}+W_{0}+c(n-k-1)}
$$

Inspired by a similar computation in class, we are going to try to write this as a Beta function. For that we will need factorials. In order to see the terms in the numerators and denominators as increasing by 1 unit like a factorial, we will multiply the top and bottom of each fraction by $1 / c$. This gives us

$$
\frac{R_{0}^{\prime}}{R_{0}^{\prime}+W_{0}^{\prime}} \cdot \frac{R_{0}^{\prime}+1}{R_{0}^{\prime}+W_{0}^{\prime}+1} \cdots \frac{R_{0}^{\prime}+(k-1)}{R_{0}^{\prime}+W_{0}^{\prime}+(k-1)} \cdot \frac{W_{0}^{\prime}}{R_{0}^{\prime}+W_{0}^{\prime}+k} \cdot \frac{W_{0}^{\prime}+1}{R_{0}^{\prime}+W_{0}^{\prime}+(k+1)} \cdots \frac{W_{0}^{\prime}+(n-k-1)}{R_{0}^{\prime}+W_{0}^{\prime}+(n-k-1)}
$$

where $R_{0}^{\prime}=R_{0} / c$ and $W_{0}^{\prime}=W_{0} / c$.
Now this looks exactly like the problem we did in class with R_{0} replaced by R_{0}^{\prime} and W_{0} replaced by W_{0}^{\prime} ! Following that example, we see that

$$
\bar{X}_{n} \xrightarrow{d} X
$$

where $X \sim \operatorname{Beta}\left(R_{0}^{\prime}, W_{0}^{\prime}\right)=\operatorname{Beta}\left(R_{0} / c, W_{0} / c\right)$.
5. (a) No, a conjugate prior does not always exist. An example is the two-parameter Weibull distribution. (This is on your table of distributions with three parameters. Set $\alpha=0$ to get the two-parameter version.)
A proof that this does not have a conjugate prior is given in
Soland, R. (1969), Bayesian Analysis of the Weibull Process With Unknown Scale and Shape Parameters, IEEE Transactions on Reliability Analysis, 18, 181-184.
(b) For a one-parameter exponential family distribution, the joint pdf has the form

$$
f(\vec{x} \mid \theta)=a(\theta) b(\vec{x}) \exp [c(\theta) d(\vec{x})]
$$

As a function of θ, this is proportional to

$$
a(\theta) \exp [c(\theta) d(\vec{x})]
$$

The natural conjugate prior would be

$$
f(\theta) \propto a(\theta) \exp [\alpha c(\theta)]
$$

for some hyperparameter α. HOWEVER, this is not guaranteed to be a proper prior. (i.e. It is not guaranteed to be integrable with respect to θ.) For more on conditions that will give a proper conjugate prior, see
Diaconis, P., and Ylvisaker, D. (1979). Conjugate priors for exponential families. Annals of Statistics, 7, 269-281.

