
APPM 4360/5360 Homework #2 Solutions Spring 2019

Problem #1 (15 points): Let f (z) be a continuous function for all z. Show that if f (z0) 6= 0, then there must be a

neighborhood of z0 in which f (z) 6= 0. (Hint: use the reverse triangle inequality: |a −b| ≥ ||a|− |b||.)

Solution: Proof by contradiction: suppose there is no neighborhood of z0 in which f (z) 6= 0, i.e. in every

neighborhood of z0, no matter how small, there is a point z1 6= z0 such that f (z1) = 0. But, by continuity of f , for

any ǫ> 0, there is a neighborhood of z0, |z − z0| < δ, such that | f (z)− f (z0)| < ǫ for all z there. Take ǫ such that

0 < ǫ< | f (z0)| and consider a point z1: | f (z1)− f (z0)| < ǫ and f (z1) = 0. We have

ǫ> | f (z1)− f (z0)| = | f (z0)|,

which is a contradiction. This proves the statement.

Problem #2 (30 points):

(a) (5 points) Discuss the mapping of the upper half of z-plane for f (z) = f (z)

(b) (5 points) Discuss the mapping of the first quadrant in the z-plane for f (z) = 1/z2

(c) (20 points) Using the stereographic projection discussed in class which maps the z-plane to the sphere

whose center is at (0,0,1), south pole is the origin and north pole is (0,0,2),

find the points on the sphere which correspond to the complex numbers (i) z = 1+ i ; (ii) z = x; x real; (iii)

z0 = x + i y where x; y lie on the circle x2 + y2 = r 2; what happens when r →∞? (iv) On the other hand,

find the numbers in the complex plane which correspond to the following points on the sphere

(X ;Y ; Z ) = (X ;Y ; Z = 1).

Solution:

(a) Since f (z) = f (z), f (z) is real for all z, so it maps the upper half of z-plane to (a subset of) the real line.

(b) The boundaries of the first quadrant are mapped to the boundaries of its image. E.g. [0,+∞) is mapped

onto itself (for real z, 1/z2 is real; f (0) =∞, f (∞) = 0); for z = i y , 0 < y <+∞, one has f (z) = 1/z2 =−1/y2

so it maps to (−∞,0). Thus, the boundary of the image is the whole R. A point z = x + i y , x > 0, y > 0, is

mapped to 1/(x + i y)2 = (x − i y)2/(x2 + y2)2 = (x2 − y2 −2i x y)/(x2 + y2)2, which has negative imaginary

part. Thus, the first quadrant is mapped onto the lower half of C.

(c) (i) z = 1+ i ; i.e. x = y = 1. Then the point on the sphere is (X ,Y , Z ) where

X =
4x

|z|2 +4
=

2

3
, Y =

4y

|z|2 +4
=

2

3
, Z =

2|z|2

|z|2 +4
=

2

3
.

(ii) z = x; x real. Then

X =
4x

|z|2 +4
=

4x

x2 +4
, Y =

4y

|z|2 +4
= 0, Z =

2|z|2

|z|2 +4
=

2x2

x2 +4
.

All these points are on the large circle – the intersection of the X , Z -plane and the sphere.

(iii) z0 = x + i y where x; y lie on the circle x2 + y2 = r 2; what happens when r →∞? Then

X =
4x

|z|2 +4
=

4x

r 2 +4
, Y =

4y

|z|2 +4
=

4y

r 2 +4
, Z =

2|z|2

|z|2 +4
=

2r 2

r 2 +4
.

Point (X ,Y , Z ) lies on a smaller circle in a plane parallel to the z-plane. As r →∞, X → 0, Y → 0 and

Z → 2, which is the north pole as it should be.
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(iv) On the other hand, find the numbers in the complex plane which correspond to the following points

on the sphere (X ;Y ; Z ) = (X ;Y ; Z = 1). Then z = x + i y where

x =
2X

2−Z
= 2X , y =

2Y

2−Z
= 2Y ,

and X 2 +Y 2 + (Z −1)2 = 1, so X 2 +Y 2 = 1. Thus, x2 + y2 = 4, the circle of radius 2 with the center at the

origin in z-plane.

Problem #3 (10 points): Verify if the function f (x, y) = sin x cosh y + i cos x sinh y satisfies the Cauchy-Riemann

conditions. If it does, find the associated analytic function f (z).

Solution: Let f (x, y) = u(x, y)+ i v(x, y) where u and v are real. Then u = sin x cosh y and v = cos x sinh y

s.t.

ux = cos x cosh y = vy , vx =−sin x sinh y =−uy ,

i.e. CR conditions hold.

f (z) =
(e i x −e−i x )(e y +e−y )

4i
+ i

(e i x +e−i x )(e y −e−y )

4
=

= i
e−i x e y −e i x e−y

2
=

e i (x+i y) −e−i (x+i y)

2i
= sin z.

Problem #4 (20 points): Given the imaginary part, v(x, y), of an analytic function, f (z) = u(x, y)+ i v(x, y), find

the real part, u(x, y), and the analytic function.

(a) v(x, y) = 3x2 y − y3 +k, where k is constant.

(b) v(x, y) = −x
x2+y2 .

Solution:

(a) v(x, y) = 3x2 y − y3 +k, where k is constant.

vx = 6x y =−uy =⇒ u =−3x y2 +h(x),

vy = 3x2 −3y2 = ux =⇒ u = x3 −3x y2 + g (y),

therefore

u(x, y) = x3 −3x y2 + const.,

f (x, y) = x3 −3x y2 + const.+ i (3x2 y − y3 +k) =

= (x + i y)3 + i k + const.,

i.e.

f (z) = z3 + i k + c,

c is a real constant.

(b) v(x, y) = −x
x2+y2 , i.e. v(r,θ) =− cosθ

r
.

vr =
cosθ

r 2
=−

uθ

r
=⇒ u =−

sinθ

r
+h(r )

vθ =
sinθ

r
= r ur =⇒ u =−

sinθ

r
+ g (θ)

therefore

u =−
sinθ

r
+ const.,
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f =−
sinθ

r
+ const.− i

cosθ

r
=

=−i
cosθ− i sinθ

r
+ const. =−i

e−iθ

r
+ const. =

=−i
z̄

zz̄
+ const. =−

i

z
+ const.

Problem #5 (15 points): Determine where the following functions are analytic; discuss whether there are any

singular points.

(a) 1
z4+1

.

(b) cosech z.

(c) ecosh z .

Solution:

(a) 1
z4+1

. It is analytic everywhere except for roots of equation z4 +1 = 0, which are s.t.

z4 = r 4e4iθ =−1 = eπi+2πi k

=⇒ r = 1, θ =
π(1+2k)

4
,k ∈Z,

i.e. different singular points are

z = e iπ/4, z = e3πi /4, z = e5πi /4, z = e7πi /4.

(b) cosech z.

cosech z =
1

sinh z
,

a ratio of functions analytic in the whole C, so it is analytic except for points where sinh z = 0,

i.e. z = iπk,k ∈Z.

(c) exp(cosh z). It is analytic everywhere in C, being a composition of analytic functions, i.e. entire.

Problem #6 (10 points): Let f (z) be analytic in some domain. Show that f (z) is necessarily a constant if either

the function f (z) is analytic or f (z) assumes only pure imaginary values in the domain.

Solution: Let f (z) = u + i v , where u and v are real. Then f (z) = u − i v . CR conditions for f (z) are ux = vy and

vx =−uy , while CR conditions for f (z) are ux =−vy and vx = uy . They are only compatible if

ux = vy = vx = uy = 0 i.e. if u and v are constant, so f (z) = const.

If analytic f (z) = i v , v real, then vx =−uy = 0 and vy = ux = 0 (since u = 0), so again f (z) = const.

Problem #7 (10 points): Find the location and explain why they are the branch points for the following

functions:

(a) (z + i )1/3

(b) log 1
(2z+i )

Solution:

(a) Let z + i = ǫe iθp which is a circular contour centered at z =−i . We have just a power (1/3) function in terms

of ζ= z + i , so z =−i and z =∞ are branch points.

(b) log 1
(2z+i )

=− log(2z + i ) =− log2− log(z + i /2). This is a number plus − log z but with shifted origin. So the

branch points are z =−i /2 and z =∞.
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Problem #8 (10 points): Solve for all values of z:

(a) 7+3e2z−iπ = 4

(b) log 3z
2z+1

= 3iπ

Solution:

(a)

7+3e2z−iπ = 4 ⇔ e2z−iπ =−1 = e iπ+2πi n , n ∈Z,

therefore

2z − iπ= iπ+2πi n ⇔ z = iπm, m ∈Z.

(b)

log
3z

2z +1
= 3iπ ⇔

3z

2z +1
= e3iπ =−1,

therefore z =−1/5.

Problem #9 (15 points): Derive coth−1 z = 1
2

log z+1
z−1

(Hint: use w = coth−1 z). Then find d
d z

coth−1 z.

Solution: One needs to find w = f (z) such that z = coth w . Then

z =
cosh w

sinh w
=

ew +e−w

ew −e−w
.

Let ζ= ew , then e−w = 1/ζ. Substituting these into the above equation, we find

z(ζ−1/ζ) = ζ+1/ζ

or

(1− z)ζ2 =−(1+ z) ⇔ ζ2 =−
1+ z

1− z
,

i.e.

e2w =
z +1

z −1
⇔ w =

1

2
log

z +1

z −1
.

Then
d

d z
coth−1 z = w ′(z) =

1

2

(
1

z +1
−

1

z −1

)

=
1

1− z2
,

as in the real case (as should be).

Problem #10 (20 points):

(a) Consider the complex velocity potential Ω(z) = k log(z − z0), where k is real and z0 is a complex constant.

Find the corresponding velocity potential and stream function. Show that the velocity is purely radial

relative to the point z = z0, and sketch the flow configuration. Such a flow is called a “source" if k > 0, and

a “sink" if k < 0. The strength M is defined as the outward rate of flow of fluid, with unit density, across a

circle enclosing z = z0: M =
∮

C Vr d s, where Vr is the radial velocity and d s is the increment of arc length in

the direction tangent to the circle C . Show that M = 2πk. (See also Subsection 2.1.2.)

Solution: Let Ω(x, y) =φ(x, y)+ iψ(x, y). Since log(z − z0) = logr + iθ, where r = |z − z0| and θ is the angle

between the line connecting z0 and z and positive x direction. Then the velocity potential φ= k logr and
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the stream function ψ= kθ, where r = |z − z0| =
√

(x −x0)2 + (y − y0)2 and θ = tan−1 y−y0

x−x0
. For the

components of the velocity field V we get

Vr =
∂φ

∂r
=

k

r
, Vθ =

1

r

∂φ

∂θ
= 0,

so we have only nonzero Vr component which means that the velocity is purely radial relative to the point

z = z0 and sign(Vr ) = sign(k) means it points away from z0 if k > 0. To compute M , let C be a circle of

radius R around z0. Then

M =
∮

C
Vr d s =

∫2π

0

k

R
·Rdθ = 2πk.

The streamlines are rays emanating from z = z0 if k > 0 and falling into z = z0 if k < 0.

(b) Consider the complex velocity potential Ω(z) =−i k log(z − z0), where k is real. Find the corresponding

velocity potential and stream function. Show that the velocity is purely circumferential relative to the

point z = z0, being counterclockwise if k > 0. Sketch the flow configuration. The strength of this flow,

called a point vortex, is defined to be M =
∮

C Vθd s, where Vθ is the velocity in the circumferential

direction and d s is the increment of arc length in the direction tangent to the circle C . Show that M = 2πk.

(See also Subsection 2.1.2.)

Solution: Let Ω(x, y) =φ(x, y)+ iψ(x, y). Since log(z − z0) = log |z − z0|+ iθ, where θ is the angle between

the line connecting z0 and z and positive x direction. Then the velocity potential φ= kθ and the stream

function ψ=−k logr , where r = |z − z0| =
√

(x −x0)2 + (y − y0)2 and θ = tan−1 y−y0

x−x0
. For the components of

the velocity field V we get

Vr =
∂φ

∂r
= 0, Vθ =

1

r

∂φ

∂θ
=

k

r
,

so we have only nonzero Vθ component which means that the velocity is purely circumferential relative to

the point z = z0 and sign(Vθ) = sign(k) means it is counterclockwise if k > 0. To compute M , let C be a

circle of radius R around z0. Then

M =
∮

C
Vθd s =

∫2π

0

k

R
·Rdθ = 2πk.

The streamlines are concentric circles around z = z0.

Problem #11 (15 points): Show that the solution to Laplace equation ∇2T = ∂2T /∂u2 +∂2T /∂v2 = 0 in the

region −∞< u <∞, v > 0, with the boundary conditions T (u,0) = T0 if u > 0 and T (u,0) =−T0 if u < 0, is given

by

T (u, v) = T0

(

1−
2

π
tan−1 v

u

)

.

Solution: From the text we have solutions to Laplace’s equation,

Ω(z) = A log w + i B

= A log(r e iθ)+ i B

= A logr + i (Aθ+B)
︸ ︷︷ ︸

ψ(θ)

and so ψ(θ) satisfies Laplace’s equation where w = r e iθ, r =
p

u2 + v2 and θ = tan−1(v/u). Now, apply the

boundary conditions. At θ = 0, we have ψ(0) = B = T0 and at ψ(π) = Aπ+T0 =−T0 and so A =−2T0/π.
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Therefore,

T (u, v) =ψ(u, v)

= Aθ+B

=
−2T0

π
tan−1(v/u)+T0

= T0

(

1−
2

π
tan−1 v

u

)

Extra-Credit Problem #12 (20 points):

(a) The above.

(b) Now we’ll use this result to solve Laplace’s equation in |z| < 1 with the boundary conditions

T (r = 1,θ) =
{

T0, 0 < θ <π

−T0, π< θ < 2π
.

Show that the transformation

w = i

(
1− z

1+ z

)

z =
i −w

i +w
maps

• |z| ≤ 1 to the upper-half w-plane (w = u + i v and v ≥ 0),

• r = 1, 0 < θ <π onto v = 0, u < 0, and

• r = 1, π< θ < 2π onto v = 0, u > 0.

(c) Use the result in part (b) and the mapping function to show that the solution of the boundary value

problem in the circle is given by

T (x, y) = T0

[

1−
2

π
cot−1

(
2y

1− (x2 + y2)

)]

= T0

[

1−
2

π
tan−1

(
1− (x2 + y2)

2y

)]

or, in polar coordinates,

T (r,θ) = T0

[

1−
2

π
cot−1

(
2r sinθ

1− r 2

)]

= T0

[

1−
2

π
tan−1

(
1− r 2

2r sinθ

)]

.

Solution:

(a) see the previous problem.

(b) One could do this in polar or Cartesian coordinates or staying in (z, z̄). We do this in Cartesian.

w = i

(
1− z

1+ z

)

= i

(
1− (x + i y)

1+ (x + i y)

)
(1+x)− i y

(1+x)− i y

= i

(
(1−x)(1+x)− i y(1−x)− i y(1+x)− y2

(1+x)2 + y2

)

= i

(
1−x2 − i y − i y − y2

(1+x)2 + y2

)

=
2y

(1+x)2 + y2
+ i

1− (x2 + y2)

(1+x)2 + y2
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For u and v we have

u(x, y) =
2y

(1+x)2 + y2

v(x, y) =
1− (x2 + y2)

(1+x)2 + y2

For |z| ≤ 1 we have x2 + y2 ≤ 1 and we see clearly that v ≥ 0 and since y ∈R it follows u ∈R.

For r = 1, x2 + y2 = 1 and v(x, y) = 0. Now, using y = r sinθ we can say

y > 0 ⇐⇒ 0 < θ <π, and

y < 0 ⇐⇒π< θ < 2π,

it is the case that

u ∈ (0,∞) ⇐⇒ 0 < θ <π, and

u ∈ (−∞,0) ⇐⇒π< θ < 2π,

(c) Plug in for u and v from part (b) to see

v

u
=

1−(x2+y2)

(1+x)2+y2

2y

(1+x)2+y2

=
1− (x2 + y2)

2y

=
1− r 2

2r sinθ

and the result follows.

Problem #13 (30 points): Find the location of the branch points and discuss a branch cut structure associated

with the function:

(a) f (z) =
(

z
z+1

)1/2

(b) f (z) = log(z2 −9)

Solution:

(a)

f (z) =
( z

z +1

)1/2
.

This is a rational function singular at z =−1 but single-valued, taken to the power of 1/2. Therefore the

branch points are those where
z

z +1
= 0 or

z

z +1
=∞,

i.e. z = 0 and z =−1 (z =∞ is not a b.p.). A branch cut must connect the two branch points, the simplest

one is the interval [−1,0] ∈R. To confirm this, consider principal angles θ1, θ2 s.t.

z = r1e iθ1 , z +1 = r2e iθ2 , =⇒
( z

z +1

)1/2
= r e iΘ =

(
r1

r2

)1/2

e i (θ1−θ2)/2,
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and the angle ranges are

0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 2π.

Then we have (at the top and bottom of x-axis, see pictures in sections 2.2 and 2.3 of the textbook)

θ1 θ2 Θ Region

0 0 0 {(x, y)|x > 0, y > 0}

π 0 π
2

{(x, y)|−1 < x < 0, y > 0}

π π 0 {(x, y)|x <−1, y > 0}

π π 0 {(x, y)|x <−1, y < 0}

π 2π −π
2

{(x, y)|−1 < x < 0, y < 0}}

2π 2π 0 {(x, y)|x > 0, y < 0}

(b) f (z) = log(z2 −9). Here z2 −9 is entire single-valued function so the only branch points are those where

z2 −9 = 0 or z2 −9 =∞. Thus, there are three branch points, z =±3 and z =∞. A branch cut must make

sure there is no possibility going around any single of them, in this case it must connect all three points.

E.g. consider a cut on real axis {z = x|x ∈ [−3,+∞)}.

Consider principal angles θ1, θ2 s.t.

z −3 = r1e iθ1 , z +3 = r2e iθ2 , =⇒ log(z2 −9) = logr + iΘ= log(r1r2)+ i (θ1 +θ2),

and the angle ranges are

0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 2π.

Then we have (at the top and bottom of x-axis, see pictures in sections 2.2 and 2.3 of the textbook)

θ1 θ2 Θ Region

0 0 0 {(x, y)|x > 3, y > 0}

π 0 π {(x, y)|−3 < x < 3, y > 0}

π π 2π {(x, y)|x <−3, y > 0}

π π 2π {(x, y)|x <−3, y < 0}

π 2π 3π {(x, y)|−3 < x < 3, y < 0}}

2π 2π 4π {(x, y)|x > 3, y < 0}

This indeed implies the above branch cut.
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