APPM 4/5720: Computational Bayesian Statistics, Spring 2018
 Problem Set Two (Due Wednesday, February 7th)

1. Suppose that we have n independent trials of an experiment where each trial can result in one of two possible outcomes labeled "success" (S) or "failure" (F). Suppose that the probability of success remains the same from trial to trial. Let $\theta=P$ (success) for each trial. Let X be the number of successes in n trials. We know that X has a binomial distribution with parameters n and θ (We write $X \sim \operatorname{bin}(n, \theta)$.) and that X has pdf

$$
P(X=x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} I_{\{0,1, \ldots, n\}}=\frac{n!}{k!(n-k)!} \theta^{x}(1-\theta)^{n-x} I_{\{0,1, \ldots, n\}} .
$$

If we generalize this to k possible outcomes/categories with probabilities $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$, respectively ($\sum_{i=1}^{k} \theta_{i}=1$) and let X_{i} be the number (in n trials) of outcomes in category i $(i=1,2, \ldots, k)$, we can collect the counts as a vector $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$. Note that we must have $\sum_{i=1}^{k} X_{i}=n$.
The vector is said to have a multinomial distribution and the pdf is

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} \theta_{1}^{x_{1}} \theta_{2}^{x_{2}} \cdots \theta_{k}^{x_{k}}
$$

Here, the x_{i} are non-negative integers that must sum to n.
We have seen that the (natural) conjugate prior for the binomial distribution is the Beta distribution. The Beta distribution with parameters $a, b>0$ has pdf

$$
f(\theta)=\frac{1}{\mathcal{B}(a, b)} \theta^{a-1}(1-\theta)^{b-1} I_{(0,1)}(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} I_{(0,1)}(\theta) .
$$

A generalization of the Beta distribution for the single probability θ to k probabilities $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ that sum to 1 is the Dirichlet distribution which has pdf

$$
f\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \theta_{1}^{\alpha_{1}-1} \theta_{2}^{\alpha_{2}-1} \cdots \theta_{k}^{\alpha_{k}-1}
$$

where the $\alpha_{i}>0$ are parameters of the Dirichlet distribution.
Show that the Dirichlet distribution is a conjugate prior for the multinomial distribution.
2. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are iid random variables and that Z is another random variable independent from the X_{i}. (Assume that Z is not a degenerate random variable. i.e. That it is not a constant with probability 1.)
Consider the random variables $Y_{i}:=X_{i}+Z$ for $i=1,2, \ldots, n$.
(a) Show that the Y_{i} are pairwise dependent. That is, for any $i \neq j$, show that Y_{i} is not independent of Y_{j}.
(b) Show that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are exchangeable.
3. Simulate 10, 000 values from an exponential distribution with rate λ for your choice of λ. Provide a histogram of your results with the exponential density superimposed. (Do not use a built-in function for exponential random variable generation. Do use a built-in function for uniform random variable generation!) Include your code when you turn in this HW.
4. Recall the Pólya Urn example from class where we started with R_{0} red balls, W_{0} white balls. At each step, we randomly selected a ball, replaced it, and put in an additional $c=1$ balls of the same color. We let

$$
X_{i}=\left\{\begin{array}{lll}
1 & , & \text { if the } i t h \text { ball selected was red } \\
0 & , & \text { otherwise }
\end{array}\right.
$$

The sample mean $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the proportion of red balls that have been observed by time step n.
In class, we saw that $\bar{X}_{n} \xrightarrow{d} X$ where $X \sim \operatorname{Beta}\left(R_{0}, B_{0}\right)$.
Find the limiting distribution for \bar{X}_{n} for a general value of c.

5. [Required for 5720 Students Only:]

(a) Does every distribution have a conjugate prior? Prove or give a counterexample and explain.
(b) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with parameter θ. Suppose that θ is one-dimensional.
We say that the sample comes from a one-parameter exponential family if the joint pdf for $X_{1}, X_{2}, \ldots, X_{n}$ can be written as

$$
f(\vec{X} \mid \theta)=a(\theta) b(\vec{x}) \exp [c(\theta) d(\vec{x})]
$$

for some functions $a(\cdot), b(\cdot), c(\theta)$ and $d(\cdot)$ with c and d non-constant. For example, if $X_{1}, X_{2}, \ldots, X_{n}$ are iid with the geometric pdf

$$
f(x \mid \theta)=(1-\theta)^{x} \theta I_{\{0,1,2, \ldots,\}}(x)
$$

the joint pdf is

$$
f(\vec{x} \mid \theta)=(1-\theta)^{\sum x_{i}} \theta^{n} \prod_{i=1}^{n} I_{\{0,1,2, \ldots,\}}\left(x_{i}\right)
$$

which can be rewritten as

$$
f(\vec{x} \mid \theta)=\underbrace{\theta^{n}}_{a(\theta)} \underbrace{I_{\{0,1,2, \ldots,\}}\left(x_{i}\right)}_{b(\vec{x})} \exp [\underbrace{\ln (1-\theta)}_{c(\theta)} \underbrace{\left(\sum x_{i}\right)}_{d(\vec{x})}] .
$$

Show that every exponential family has a conjugate prior.

