APPM 5600: Homework #2 Due in class Wednesday Sept 27

1 At every iteration of the conjugate-gradients algorithm you have to compute a fixed number of matrixvector products and vector dot products. Supposing you compute all n iterations, so that in exact arithmetic you would have found the exact solution. How many floating point operations does this cost? Give your answer in terms of asymptotic order, e.g. $\mathcal{O}(n^2)$; don't give an exact cost.

2 At each step of CG an optimal solution is sought within the subspace span{ r_0, \ldots, r_k } where r_i are the residuals (use $x_0 = 0$). Show that this span is equal to span{ $b, Ab, \ldots, A^{k-1}b$ }. Any subspace of this form is called a 'Krylov' subspace. What happens if $A^k b$ is within span{ $b, Ab, \ldots, A^{k-1}b$ }?

3 At each step of the CG method the function

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \mathbf{A} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{b}$$

is minimized within some subspace. Show that the **A**-norm of the error is minimized within the search subspace at each step. The **A**-norm of the error is

$$\|\boldsymbol{x} - \boldsymbol{x}_*\|_A^2 = (\boldsymbol{x} - \boldsymbol{x}_*)^T \mathbf{A} (\boldsymbol{x} - \boldsymbol{x}_*), \text{ where } \mathbf{A} \boldsymbol{x}_* = \boldsymbol{b}$$

4 Problem 26 from Atkinson, chapter 8. Do not do this by hand. FYI this is a finite-difference discretization of a Poisson equation $\Delta u = f$ (you do not need to know this, and it won't help you solve the problem).

5 Problem 13 from Atkinson, chapter 2.

6 Consider the problem of computing 1/a for $a \neq 0$ using only addition, subtraction, and multiplication (i.e. using floating-point operations). If a is represented as a normalized floating-point number, we can more specifically consider computing 1/b for $b \in [1/2, 1]$.

- (a) Show that f(x) = b 1/x has the appropriate root, and that Newton's method will locally converge quadratically.
- (b) Show that Newton's method for this function can be implemented using only addition, subtraction, and multiplication (no division).
- (c) Show that if your initial guess is $x_0 = 3 2b$, the iteration will converge to the root. FYI this initial guess is based on approximating the function h(x) = 1/x by a line in the interval [1/2, 1].