Book Problems:

Chapter 3: problem 7 (corrected, see below) and 15 (assume the initial condition $u(x, 0)=u_{0}(x)$).

Additional Problems:

3.7 (From http://www4.ncsu.edu/~shearer/corrections.pdf) Use the method of characteristics to solve the initial value problem for $u=u(x, y, t)$ on the domain $-\infty<x, y<\infty$ for small $t>0$:

$$
\begin{aligned}
u_{t}+y u_{x}+u u_{y} & =0, \\
u(x, y, 0) & =x+y .
\end{aligned}
$$

Show that the solution has a singularity as $t \rightarrow t^{*}$ for some $t^{*}>0$ and find the value of t^{*}.
A1 Solve the given initial value problem and determine the values of x and y for which it exists.
(a) $u_{x}+u^{2} u_{y}=1, u(x, 0)=1$
(b) $u_{x}+\sqrt{u} u_{y}=0, u(x, 0)=x^{2}+1$

A2 Consider the equation $y^{2} u_{x}+x u_{y}=\sin \left(u^{2}\right)$.
(a) Describe all the characteristic curves in the $x-y$ plane.
(b) For the solution u of the initial value problem with $u(x, 0)=x$, determine the values of $u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}$ on the x-axis.

A3 Consider the inviscid Burgers' equation

$$
\begin{equation*}
u_{t}+u u_{x}=0 . \tag{1}
\end{equation*}
$$

(a) Suppose $u(x, 0)=\tanh x$. For what values of $t>0$ does the solution of the quasi-linear PDE remain smooth and single valued? Give an approximate sketch of the characteristics in the $x-t$ plane.
(b) Suppose $u(x, 0)=-\tanh x$. For what values of $t>0$ does the solution of the quasilinear PDE remain smooth and single valued? Give an approximate sketch of the characteristic curves in the $x-t$ plane.
(c) Suppose

$$
u(x, 0)=\left\{\begin{array}{cc}
0 & x<0 \tag{2}\\
x & 0 \leq x<1 \quad, \quad x \in \mathbb{R} . \\
1 & 1 \leq x
\end{array}\right.
$$

Sketch the characteristic curves. Solve the Cauchy problem. Hint: solve the problem in each region $x<0, x \in(0,1)$, and $x>1$ separately and "paste" the solutions together.

A4 Find the closed form solution $u(x, t)$ of the initial-boundary value problem for the wave equation

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =0, \quad x, t>0 \\
u(x, 0) & =g(x), \quad u_{t}(x, 0)=h(x), \quad x>0 \\
u_{x}(0, t) & =\alpha(t), \quad t \geq 0
\end{aligned}
$$

where $g, h, \alpha \in C^{2}$. What additional conditions are required on g, h, and α to ensure that $u \in C^{2}$ even on the characteristic $x=c t$?

