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Solutions to Problem Set One

1. The likelihood is
f(~x|µ)
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Completing the square gives us
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So, we see that the posterior distribution for µ given ~x is N(b/a, 1/a). Specifically,
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Note that we can write
∑
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which is a weighted average of the sample mean and the mean of the prior for µ.

Since the posterior distribution is normal, the prior used was a conjugate prior for the model.



2. (a)

fX(x) =
1

Γ(α)
βαxα−1e−βx I(0,∞)(x)

y = g(x) = 1/y ⇒ x = g−1(y) = 1/y

So,
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Let us denote this as Y ∼ IG(α, β).

(b) The likelihood is

f(~x|µ)
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This is another inverse gamma distribution. Thus, we see that the prior was a conjugate
prior and specifically that
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3. The likelihood is
f(~x|λ)

iid
=

∏n
i=1 f(xi|λ)

=
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i=1 λe
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= λne−λ
∑
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∏n
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If we look at this as a function of λ, we see a gamma looking pdf (in λ).

Let’s try a gamma prior. Specifically, λ ∼ Γ(α, β) for some hyperparameters α, β > 0. Then

f(λ) =
1

Γ(α)
βαλα−1e−βλ I(0,∞)(λ).



The posterior is then

f(λ|~x) ∝ f(~x|λ) · f(λ)

∝ λne−λ
∑
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Thus, we see that the posterior distribution is

λ|~x ∼ Γ(α+ n, β +
∑

xi)

which is in the same family of distributions as the prior, as desired!

4. There were 3 questions posed in this problem. Although they were not labeled (a), (b), and
(c), I will label the solutions this way for clarity.

Let

Θ =

{
1 , if Judy is a heterozygote
0 , otherwise

For i = 1, 2, . . . , n, let

Xi =

{
1 , if child i has brown eyes
0 , otherwise

Note that the proportion of blue-eyed individuals in the population is p2, the proportion of
heterozygotes is 2p(1 − p), and the proportion with brown eyes that are not heterozygotes
(XX) is 1− p2 − 2p(1− p) = (1− p)2.

(a) Show that among brown-eyed children of brown-eyed parents, the expected proportion
of heterozygotes is 2p/(1 + 2p).

We want to find

P (heterozygote|brown eyes, parents brown eyes).

Temporary notation, for this part (a) only, will be P (H|B,P ).

P (H|B,P ) =
P (H,B, P )

P (B,P )
=
P (H,P )

P (B,P )

The B was dropped in the numerator because it is implied by the H. That is, if a person
is a heterozygote, he/she definitely has brown eyes.

Now,

P (H,P ) = P (H|XX,XX︸ ︷︷ ︸
parents

)P (XX,XX) + 2P (H|XX,Xx︸ ︷︷ ︸
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= 0 · (1− p)2 · (1− p)2 + 2 · 1
2 · (1− p)

2 · 2p(1− p) + 1
2 · 2p(1− p) · 2p(1− p)

= 2p(1− p)3 + 2p2(1− p)2.



Also,

P (B,P ) = P (B|XX,XX︸ ︷︷ ︸
parents

)P (XX,XX) + 2P (B|XX,Xx︸ ︷︷ ︸
parents

)P (XX,Xx) + P (B|Xx,Xx︸ ︷︷ ︸
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)P (Xx,Xx)

= 1 · (1− p)2 · (1− p)2 + 2 · 1 · (1− p)2 · 2p(1− p) + 3
4 · 2p(1− p) · 2p(1− p)

= (1− p)4 + 4p(1− p)3 + 3p2(1− p)2.

So,

P (H|BP ) = 2p(1−p)3+2p2(1−p)2
(1−p)4+4p(1−p)3+3p2(1−p)2

= 2p(1−p)2[(1−p)+p]
(1−p)2[(1−p)2+4p(1−p)+3p2]

= 2p
1+2p

√

(b) Suppose that Judy, a brown-eyed child of brown-eyed parents, married a heterozygote,
and they have n children, all brown-eyed. Find the posterior probability that Judy is a
heterozygote.

Since Judy is a brown-eyed child of brown-eyed parents, the prior (before children)
probabilities of her being a heterozygote or not are given by

P (Θ = 1) =
2p

1 + 2p
and P (Θ = 1) = 1− 2p

1 + 2p
=

1

1 + 2p
.

For i = 1, 2, . . . , n,

P (Xi = 1|Judy is Xx, Judy’s husband is Xx) = 1−P (Xi = 0|Judy is Xx, Judy’s husband is Xx)

= 1− P (ith child inherits x and x) = 1− 1

2
· 1

2
=

3

4
.

Generalizing, (and noting that the genes that one child inherits are independent of the
genes another child inherits)

P (X1 = 1, X2 = 1, . . . , Xn = 1| Judy is Xx︸ ︷︷ ︸
Θ=1

, Judy’s husband is Xx︸ ︷︷ ︸
call this Y = 1

) =

(
3

4

)n
.

Since Judy definitely marries a heterozygote, that information will stay constant through
out the problem. It will be on the right side of any and every conditional probability
statement here so we will not bother to write it. Using this convention, we know that

P (X1 = 1, X2 = 1, . . . , Xn = 1|Θ = 1) =

(
3

4

)n
.

We also know that, because Judy has brown eyes, if she is not a heterozygote, she must
be XX. Since her husband is Xx, each of their children will be either XX or Xx, and
so all of them will be brown-eyed. That is,

P (X1 = 1, X2 = 1, . . . , Xn = 1|Θ = 0) = 1.

Now, we compute the posterior probability that Judy is a heterozygote.

P (Θ = 1|X1 = 1, . . . , Xn = 1)
notation

= P (Θ = 1| ~X = ~1)

= P ( ~X=~1|θ=1)P (Θ=1)

P ( ~X=~1|Θ=1)P (Θ=1)+P ( ~X=~1|Θ=0)P (Θ=0)

=

(
3
4

)n
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1+2p(
3
4

)n
· 2p

1+2p + 1 · 1
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.



(c) Suppose that Judy, a brown-eyed child of brown-eyed parents, marries a heterozygote,
and they have n children, all brown-eyed. Find the probability that her first grandchild
has blue eyes.

I am going to be pretty abusive with notation here because there is a lot to write. Let G,
C, and S be the statuses of the grandchild, child, and spouse of the child, respectively.
Assume all probabilities that I write are conditional on any and all given
information. Then,

P (G = xx) = P (G = xx|C = Xx, S = Xx) · P (C = Xx, S = Xx)

+P (G = xx|C = Xx, S = xx) · P (C = Xx, S = xx)

+P (G = xx|C = Xx, S = Xx) · P (C = xx, S = Xx)

+P (G = xx|C = xx, S = xx) · P (C = xx, S = xx)

= 1
4 · P (C = Xx, S = Xx) + 3

4 · P (C = Xx, S = xx)

+3
4 · P (C = xx, S = Xx) + 1 · P (C = xx, S = xx)

Assuming independence of the eye color of the child and his/her spouse (Who knows,
maybe they met at a brown-eye club?), and using the population proportions for eye
color for the spouse, we have

P (G = xx) = 1
4 · P (C = Xx) · 2p(1− p) + 3

4 · P (C = Xx) · p2

+3
4 · P (C = xx) · 2p(1− p) + 1 · P (C = xx) · p2

Now, letting J be Judy’s status, (and recalling (*) that her husband is a heterozygote
and that we know all of her children have brown eyes)

P (C = Xx) = P (C = Xx,Θ = 1) + P (C = Xx, θ = 0)

= P (C = Xx, J = Xx) + P (C = Xx, J = XX)

= P (C = Xx|J = Xx) · P (J = Xx) + P (C = Xx|J = XX) · P (J = XX)

=
2

3︸︷︷︸
(∗)

·q + 1
2 · (1− q)

where q = P (Θ = 1|X1 = 1, . . . , Xn = 1) is the probability computed above in part (b).

Also,

P (C = xx) = P (C = xx,Θ = 1) + P (C = xx, θ = 0)

= P (C = xx, J = Xx) + P (C = xx, J = XX)

= P (C = xx|J = Xx) · P (J = Xx) + P (C = xx|J = XX) · P (J = XX)

= 1
4 · q + 0 · (1− q) = 1

4 · q



Putting it all together, we have

P (G = xx) = 1
4 ·
[

2
3 · q + 1

2 · (1− q)
]
· 2p(1− p)

+3
4 ·
[

2
3 · q + 1

2 · (1− q)
]
· p2

+3
4

1
4 · q · 2p(1− p)

+1 · 1
4 · q · p

2

Yuck!

5. (a) I’ll show it for continuous random variables only. Suppose that X1, X2, . . . , Xn are iid
with pdf f . Then the joint pdf is fX1,X2,...,Xn(x1, x2, . . . , xn) = f(x1) · f(x2) · · · f(xn)

Let π = (π1, π2, . . . , πn) denote a permutation of the indices {1, 2, . . . , n}. Then

fX1,X2,...,Xn(xπ1 , xπ2 , . . . , xπn)
iid
= f(xπ1) · f(xπ2) · · · f(xπn)

= f(x1) · f(x2) · · · f(xn)

since f(xπ1) · f(xπ2) · · · f(xπn) is just f evaluated at all of the xi and multiplied in some
order.

Thus, we see that

fX1,X2,...,Xn(xπ1 , xπ2 , . . . , xπn) = fX1,X2,...,Xn(x1, x2, . . . , xn)

and so X1, X2, . . . , Xn are exchangeable random variables.

(b) Consider an urn containing 1 red ball and 2 white balls. Draw balls one at a time,
without replacement, and note the color. Let

Xi =

{
1 , if the ithe ball drawn is red
0 , otherwise.

Then X1 and X2 are exchangeable since

P (X1 = 1, X2 = 0, X3 = 0) ==
1

3
· 1 · 1 =

1

3

P (X1 = 0, X2 = 1, X3 = 0) ==
2

3
· 1

2
· 1 =

1

3

and

P (X1 = 0, X2 = 0, X3 = 1) ==
2

3
· 1

2
· 1 =

1

3
.

For any other x1, x2, x3, P (X1 = x1, X2 = x2, X3 = x3) = 0.

So, P (X1 = x1, X2 = x2, X3 = x3) is invariant under any permutation of the arguments
and therefore X1, X2, X3 are exchangeable.

However, they are clearly not independent!


