Numerical Analysis 4660 Applied Mathematics

Assignment 1

Due by Friday, February 2nd at 5:30 pm

In what follows $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, that is A is a $n \times n$ real matrix and x is an *n*-dimensional column vector. Unless noted, all references are to Burden and Faires, Numerical Analysis, 9th edition.

$$(0.1) $||A^t||_2 = ||A||_2$$$

and that

(0.2)
$$||A||_2^2 = ||AA^t||_2 = ||A^tA||_2.$$

(a) Use inner products to show that for any x

$$||Ax||_2^2 \le ||A^t A||_2 ||x||_2^2$$

and hence,

(0.3)
$$||A||_2^2 \le ||A^t A||_2$$

(b) Use (0.3) and property (v) of a matrix norm to conclude that, for any matrix A,

$$||A||_2 \le ||A^t||_2$$

and use this property for A and A^t to conclude (0.1).

- (c) Use (0.3), property (v) of a matrix norm, and (0.1) to conclude that $||A||_2^2 = ||AA^t||_2$.
- (d) Use (0.1) and part (c) to conclude that $||A||_2^2 = ||A^tA||_2$.
- (2) Prove that $\operatorname{rank}(A) = \operatorname{rank}(A^t)$.
- (3) Prove that if A is symmetric, that is $A = A^t$, then all its eigenvalues are real-valued.
- (4) Here we explore some properties of a diagonally dominant matrix A (see definition 6.20).
 - (a) Use definition 6.20 and Theorem 7.11 to show that

$$\left\|A\right\|_{\infty} \le 2 \max_{1 \le i \le n} \left|a_{ii}\right|.$$

Check this bound on problem 4c of Exercise Set 7.1.

(b) If A has positive diagonal entries, is symmetric, and at least one of the inequalities in the definition of diagonally dominant is strict then ⟨Ax, x⟩ is positive for any x ≠ 0. Prove this property for a 2×2 matrix A. (5) Here we explore some properties of a second difference matrix. For this problem, $A \in \mathbb{R}^{11 \times 11}$ is the tridiagonal matrix

	2	-1	0		0]
	-1	2	-1	0	:
A =	÷	-1	·.	·.	0
			·	2	$\begin{bmatrix} -1\\2 \end{bmatrix}$
	0		•••	-1	2

(a) For k = 1, 2, 3 compute

$$Av^{(k)}$$

where the entries of the vectors $v^{(k)}$ are defined as

$$v_i^{(1)} = 1, i = 1, \dots, 11,$$

 $v_i^{(2)} = 1 + \frac{i}{11}, i = 1, \dots, 11$

and

$$v_i^{(3)} = \frac{i^2 - i + 1}{121}, i = 1, \dots, 11$$

and give an explanation of the result.

(b) Implement the Gauss-Seidel iterative method (Algorithm 7.2) and use it to find the solution u and w of the following two linear systems

$$Au = e^{(1)}$$

and

$$4w = e^{(11)}.$$

where $e_l^{(k)} = \delta_{kl}$. That is, $e^{(1)}$ and $e^{(11)}$ are the first and last vectors of the canonical basis of \mathbb{R}^n . Show that $A(v^{(1)} - u - w) = 0$, where $v^{(1)}$ is defined in part (a). Can you explain this result?

- (c) Find the eigenvalues of A and verify that your result matches the property mentioned in problem 4(b).
- (d) If $\lambda = \rho(A)$ is the largest eigenvalue of A, compute

$$c_k = \frac{(Av)_k}{\lambda v_k}, \ k = 1, \dots, 11$$

where

$$v_k = \left(1 - \sqrt{\lambda}\right)^k, \ k = 1, \dots, 11.$$

Can you explain this result?