Numerical Analysis 4660 Applied Mathematics

Assignment 1

Due by Friday, February 2nd at 5:30 pm
In what follows $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$, that is A is a $n \times n$ real matrix and x is an n-dimensional column vector. Unless noted, all references are to Burden and Faires, Numerical Analysis, 9th edition.
(1) The goal of this problem is to show that

$$
\begin{equation*}
\left\|A^{t}\right\|_{2}=\|A\|_{2} \tag{0.1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\|A\|_{2}^{2}=\left\|A A^{t}\right\|_{2}=\left\|A^{t} A\right\|_{2} \tag{0.2}
\end{equation*}
$$

(a) Use inner products to show that for any x

$$
\|A x\|_{2}^{2} \leq\left\|A^{t} A\right\|_{2}\|x\|_{2}^{2}
$$

and hence,

$$
\begin{equation*}
\|A\|_{2}^{2} \leq\left\|A^{t} A\right\|_{2} \tag{0.3}
\end{equation*}
$$

(b) Use (0.3) and property (v) of a matrix norm to conclude that, for any matrix A,

$$
\|A\|_{2} \leq\left\|A^{t}\right\|_{2}
$$

and use this property for A and A^{t} to conclude (0.1).
(c) Use (0.3), property (v) of a matrix norm, and (0.1) to conclude that $\|A\|_{2}^{2}=\left\|A A^{t}\right\|_{2}$.
(d) Use (0.1) and part (c) to conclude that $\|A\|_{2}^{2}=\left\|A^{t} A\right\|_{2}$.
(2) Prove that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)$.
(3) Prove that if A is symmetric, that is $A=A^{t}$, then all its eigenvalues are real-valued.
(4) Here we explore some properties of a diagonally dominant matrix A (see definition 6.20).
(a) Use definition 6.20 and Theorem 7.11 to show that

$$
\|A\|_{\infty} \leq 2 \max _{1 \leq i \leq n}\left|a_{i i}\right|
$$

Check this bound on problem 4c of Exercise Set 7.1.
(b) If A has positive diagonal entries, is symmetric, and at least one of the inequalities in the definition of diagonally dominant is strict then $\langle A x, x\rangle$ is positive for any $x \neq 0$. Prove this property for a 2×2 matrix A.
(5) Here we explore some properties of a second difference matrix. For this problem, $A \in \mathbb{R}^{11 \times 11}$ is the tridiagonal matrix

$$
A=\left[\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & 0 & \vdots \\
\vdots & -1 & \ddots & \ddots & 0 \\
& & \ddots & 2 & -1 \\
0 & & \cdots & -1 & 2
\end{array}\right]
$$

(a) For $k=1,2,3$ compute

$$
A v^{(k)}
$$

where the entries of the vectors $v^{(k)}$ are defined as

$$
\begin{gathered}
v_{i}^{(1)}=1, i=1, \ldots, 11, \\
v_{i}^{(2)}=1+\frac{i}{11}, i=1, \ldots, 11
\end{gathered}
$$

and

$$
v_{i}^{(3)}=\frac{i^{2}-i+1}{121}, i=1, \ldots, 11
$$

and give an explanation of the result.
(b) Implement the Gauss-Seidel iterative method (Algorithm 7.2) and use it to find the solution u and w of the following two linear systems

$$
A u=e^{(1)}
$$

and

$$
A w=e^{(11)}
$$

where $e_{l}^{(k)}=\delta_{k l}$. That is, $e^{(1)}$ and $e^{(11)}$ are the first and last vectors of the canonical basis of \mathbb{R}^{n}. Show that $A\left(v^{(1)}-u-w\right)=0$, where $v^{(1)}$ is defined in part (a). Can you explain this result?
(c) Find the eigenvalues of A and verify that your result matches the property mentioned in problem 4(b).
(d) If $\lambda=\rho(A)$ is the largest eigenvalue of A, compute

$$
c_{k}=\frac{(A v)_{k}}{\lambda v_{k}}, k=1, \ldots, 11
$$

where

$$
v_{k}=(1-\sqrt{\lambda})^{k}, k=1, \ldots, 11
$$

Can you explain this result?

