APPM 4/5720: Computational Bayesian Statistics, Spring 2018 Problem Set One (Due Friday, January 26th)

1. Let X_1, X_2, \ldots, X_n be independent and identically distributed normal random variables with mean μ and variance σ^2 . (We write $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$.)

Assume that σ^2 is fixed and assume a $N(\mu_0, \sigma_0^2)$ prior distribution for the parameter μ . (Assume that μ_0 and σ_0^2 are known hyperparameters.)

Find the posterior distribution for μ . (Name it.) Is the normal distribution a conjugate prior for μ for this model? Explain.

2. Suppose that X has a gamma distribution with parameters α and β . We write $X \sim \Gamma(\alpha, \beta)$. In our class, this will always mean that X has the pdf

$$f(x) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha - 1} e^{-\beta x} I_{(0,\infty)}(x).$$

(Whereas for some people it means that the pdf is $f(x) = \frac{1}{\Gamma(\alpha)} \frac{1}{\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} I_{(0,\infty)}(x)$.) For our parameterization α is known as a shape parameter and β is known as an integration of the second sec

For our parameterization, α is known as a *shape parameter* and β is known as an *inverse scale parameter*. (For the other parameterization, β is known as the *scale parameter*.)

- (a) Suppose that $X \sim \Gamma(\alpha, \beta)$. Find the probability density function for Y := 1/X. Although this might not be a "recognizable" distribution for you, we call the distribution the "inverse gamma distribution" and will denote it as $Y \sim IG(\alpha, \beta)$.
- (b) Suppose that $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with μ fixed and known. Assume an inverse gamma prior distribution for σ^2 , with hyperparameters α and β . (i.e. that $\sigma^2 \sim IG(\alpha, \beta)$) Find the posterior distribution for σ^2 . Is the inverse gamma a conjugate prior for this

normal model? Explain.

- 3. Let X_1, X_2, \ldots, X_n be independent and identically distributed exponential random variables with rate λ . Find a conjugate prior for λ . (Prove that it is a conjugate prior.)
- 4. (Gelman et.al., Ch 1, Problem 3) Probability calculation for genetics (from Lindley, 1965): Suppose that in each individual of a large population there is a pair of genes, each of which can be either x or X, that controls eye color: those with xx have blue eyes, while heterozygotes (those with Xx or xX) and those with XX have brown eyes. The proportion of blue-eyed individuals is p^2 and of heterozygotes is 2p(1-p), where 0 . Each parent transmitsone of its own genes to the child; if a parent is a heterozygote, the probability that it transmits $the gene of type X is <math>\frac{1}{2}$. Assuming random mating, show that among brown-eyed children of brown-eyed parents, the expected proportion of heterozygotes is 2p/(1+2p). Suppose Judy, a brown-eyed child of brown-eyed parents, marries a heterozygote, and they have *n* children, all brown-eyed. Find the posterior probability that Judy is a heterozygote and the probability that her first grandchild has blue eyes.
- 5. The random variables X_1, X_2, \ldots, X_n are said to be *exchangeable* if the joint distribution of (X_1, X_2, \ldots, X_n) is the same as the joint distribution of $(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)})$ for any permutation π of the indices $\{1, 2, \ldots, n\}$.
 - (a) Show that if X_1, X_2, \ldots, X_n are iid, then they are exchangeable.
 - (b) Give an example, (n = 2 is fine) to show that exchangeability does not necessarily imply "iid-ness".