APPM 4/5720: Computational Bayesian Statistics, Spring 2018

Problem Set One (Due Friday, January 26th)

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed normal random variables with mean μ and variance σ^{2}. (We write $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$.)
Assume that σ^{2} is fixed and assume a $N\left(\mu_{0}, \sigma_{0}^{2}\right)$ prior distribution for the parameter μ. (Assume that μ_{0} and σ_{0}^{2} are known hyperparameters.)
Find the posterior distribution for μ. (Name it.) Is the normal distribution a conjugate prior for μ for this model? Explain.
2. Suppose that X has a gamma distribution with parameters α and β. We write $X \sim \Gamma(\alpha, \beta)$. In our class, this will always mean that X has the pdf

$$
f(x)=\frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{-\beta x} I_{(0, \infty)}(x)
$$

(Whereas for some people it means that the pdf is $f(x)=\frac{1}{\Gamma(\alpha)} \frac{1}{\beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} I_{(0, \infty)}(x)$.)
For our parameterization, α is known as a shape parameter and β is known as an inverse scale parameter. (For the other parameterization, β is known as the scale parameter.)
(a) Suppose that $X \sim \Gamma(\alpha, \beta)$. Find the probability density function for $Y:=1 / X$. Although this might not be a "recognizable" distribution for you, we call the distribution the "inverse gamma distribution" and will denote it as $Y \sim I G(\alpha, \beta)$.
(b) Suppose that $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$ with μ fixed and known.

Assume an inverse gamma prior distribution for σ^{2}, with hyperparameters α and β. (i.e. that $\left.\sigma^{2} \sim I G(\alpha, \beta)\right)$
Find the posterior distribution for σ^{2}. Is the inverse gamma a conjugate prior for this normal model? Explain.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed exponential random variables with rate λ. Find a conjugate prior for λ. (Prove that it is a conjugate prior.)
4. (Gelman et.al., Ch 1, Problem 3) Probability calculation for genetics (from Lindley, 1965): Suppose that in each individual of a large population there is a pair of genes, each of which can be either x or X , that controls eye color: those with xx have blue eyes, while heterozygotes (those with Xx or xX) and those with XX have brown eyes. The proportion of blue-eyed individuals is p^{2} and of heterozygotes is $2 p(1-p)$, where $0<p<1$. Each parent transmits one of its own genes to the child; if a parent is a heterozygote, the probability that it transmits the gene of type X is $\frac{1}{2}$. Assuming random mating, show that among brown-eyed children of brown-eyed parents, the expected proportion of heterozygotes is $2 p /(1+2 p)$. Suppose Judy, a brown-eyed child of brown-eyed parents, marries a heterozygote, and they have n children, all brown-eyed. Find the posterior probability that Judy is a heterozygote and the probability that her first grandchild has blue eyes.
5. The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be exchangeable if the joint distribution of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is the same as the joint distribution of $\left(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)}\right)$ for any permutation π of the indices $\{1,2, \ldots, n\}$.
(a) Show that if $X_{1}, X_{2}, \ldots, X_{n}$ are iid, then they are exchangeable.
(b) Give an example, ($n=2$ is fine) to show that exchangeability does not necessarily imply "iid-ness".

