Book Problems:

Chapter 1: problems 4, 7, 8
Chapter 2: problems 1, 5, 6

Additional Problem:

A1 Consider the initial/boundary value problem for the linear advection equation

$$
\begin{array}{r}
u_{t}+u_{x}=0, \quad(x, t) \in D=\{(x, t) \mid t>0, x>b t\} \subset \mathbb{R}^{2}, \\
u(b t, t)=f(t) \in C^{1}(0, \infty), \quad t>0, \quad u(x, 0)=g(x) \in C^{1}(0, \infty), \quad x>0, \tag{1}
\end{array}
$$

where $0 \leq b<1$ and $C^{1}(0, \infty)$ is the collection of all continuously differentiable functions with domain $(0, \infty)$. This is a signaling problem where a signal is emitted from a (possibly) moving source along $x-b t=0$.
(a) Solve the initial/boundary value problem when $g(x)=0$.
(b) Solve the initial/boundary value problem when $f(t)=0$.
(c) Solve the full initial/boundary value problem.
(d) What happens if $b \geq 1$?

