APPM 3570: Homework Set 14

- 1. Chapter 7 in Ross: Problems 14, 17, 24, 36, 38, 45, 56, 58
- 2. Gambling strategies. Consider a game in which the probability of winning and losing each play is p and 1 p. You will explore the effects of two gambling strategies.

(a) A gambler bets \$1 each time they play the game. What are their expected winnings after 3 plays?

(b) Another gambler starts their bet at \$1, and doubles their bet each time they lose. If they win, they reset their bet to \$1 on the next bet. What are their expected winnings after 3 plays?

(c) For what values of p will the gambler described part (b) have more expected winnings than the gambler from part (a) in 3 plays?

3. Polling as sub-sampling. Before you work this problem, read through Example 4c in Section 7.4 of Ross. We will explore the variability in estimating a candidate's favorability by polling. Consider a country with N voters that is having an upcoming election. Each person has an opinion v_i which can have one of three values: 1 if they favor candidate A, 0 if they favor candidate B, and 1/2 if they are undecided. There are n_A = p_A ⋅ N people in favor of candidate A; n_B = p_B ⋅ N people in favor of candidate B; and n_U = p_U ⋅ N undecided (Note: n_A + n_B + n_U = N and p_A + p_B + p_U = 1).

(a) Select *n* people uniformly randomly and define I_i as an indicator variable that is 1 if person i = 1, ..., N is sampled and 0 otherwise. Compute $E[I_i]$, $E[I_i, I_j]$, $Var(I_i)$, and $Cov(I_i, I_j)$.

(b) Compute the correlation coefficient $\rho(I_i, I_j)$. How does it change as n is increased?

(c) Define $S = \sum_{i=1}^{N} v_i I_i$ as the total favorability obtained from the sample of *n* people. Compute E[S] and Var[S]. Note, it will not be quite the same as the result on p.310, since we have specified v_i differently here.

(d) For the proportional favorability S/n, compute E[S/n] and Var[S/n].

(e) What happens to Var[S/n] as n is increased? Why? Also, explain what happens when n = N.

Extra Credit: Correctly complete this problem to add 5 points back to your score on Exam 2.

4. Consider two i.i.d. uniform random variables $X \sim U(0,1)$ and $Y \sim U(0,1)$. What is the probability that X < 1/2 given X < Y?