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Solutions to Problem Set Ten

1. By number of steps to acceptance, I meant the number of runs through the steps of the entire
accept-reject algorithm. If you return 3 times this number, that’s understandable and you’ll
get full credit.

Since the trials are independent, the number of trials until the first acceptance is a geometric
random variable (the one that starts from 1) with some parameter p. The expected number
of trials is then 1/p. We need to find p.

p = P ( accept on any one trial )

= P
(
U ≤ f(Y )

ch(Y )

)
=
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∣∣∣Y = y
)
h(y) dy

=
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(
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)
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=

∫∞
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)
h(y) dy

=
∫∞
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f(y)
ch(y) h(y) dy

since P (U ≤ u) = u for 0 < u < 1.

After cancelling the h(y), we get

p =
1

c

∫ ∞
−∞

f(y) dy︸ ︷︷ ︸
1

=
1

c

Thus, the expected number of steps to acceptance is

1/p = c

2. The Γ(3, 2) density is
f(x) = 4x2e−2x

for x > 0

Let’s try an h that is heavier in the tails and easy to sample from

h(x) = e−x

for x > 0.

We need to find a c such that ch(x) ≥ f(x) for all x > 0. That is, we want

c ≥ f(x)

h(x)
for all x > 0.



Using Calculus to maximize the ratio r(x) := f(x)/h(x), we get that the maximum value
occurs at x = 2 and is c = f(2)/h(2) = 16e−2 ≈ 2.165365. So as to not worry about rounding
error, let’s use the slightly higher upper bound c = 2.2 in our algorithm.

3. We will first determine the stationary distribution for the number of pairs of players in the
system. We will then use this to determine the stationary distribution for the number of
courts occupied.

The birth rates are
λ0 = λ1 = λ2 = λ3 = λ = 3

with
λ4 = λ5 = · · · = 0.

Since the mean time that a court is occupied is 1, the departure rate for a single court is
µ = 1/1 = 1 per hour.

The system death rates are then µ0 = 0 and

µ1 = µ = 1, µ2 = µ3 = µ4 = 2µ = 2.

The 2µ comes from the rate of the exponential system departure time derived from a minimum
of 2 exponentials,each with rate µ.

If πn is the stationary distribution for this process that counts the number of pairs of players
in the system, we know that

π5 = π6 = · · · = 0

since there can not be 5 or more pairs in the system.

Now

π1 =
λ0
µ1
π0 = 3π,

π2 =
λ0λ1
µ1µ2

π0 =
9

2
π0,

π3 =
λ0λ1λ2
µ1µ2µ3

π0 =
27

4
π0,
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π4 =
λ0λ1λ2λ3
µ1µ2µ3µ4

π0 =
81

8
π0,

we know that
1 = π0 + π1 + π2 + π3 + π4

= π0
(
1 + 3 + 9

2 + 27
4 + 81

8

)
which gives us that π0 = 8/203 and therefore that

π1 = 3π0 =
24

203
,

π2 =
9

2
π0 =

36

203
,



π3 =
27

4
π0 =

54

203
,

and

π4 =
81

8
π0 =

81

203
.

The stationary distribution for the number of courts occupied is

π∗0 = π0 = 8
203

π∗1 = π1 = 24
203

π∗2 = π2 + π3 + π4 = 171
203 .

4. For the M/M/∞ queue, we computed the stationary distribution in class. The long-run
probability of there being n customers in the system is

πn =
1

n!

(
λ

µ

)n
e−λ/µ

for n = 0, 1, 2, . . .

For this problem, we must first put λ and µ into the same units, say minutes. So, λ = 74/60
calls per minute. We want to find the minumum value of N such that

N∑
n=0

πn ≥ 0.9999

when λ = 74/60 and µ = 1/4.2.

After checking the sum for N = 0, 1, 2, . . ., we determine that the value of N should be 16.

5. (a) Let X(t) be the number of people (organisms, things, particles, etc...) in the population
at time t. Then {X(t)} is a birth-and-death model with parameters

λi = iλ+ θ , i = 0, 1, . . . , N − 1

λi = iλ , i = N,N + 1, . . .

µi = iµ , i = 1, 2, . . .



(b) Note that
λ0 = θ = 1
λ1 = λ+ θ = 1 + 1 = 2
λ2 = 2λ+ θ = 2(1) + 1 = 3
λ3 = 3λ = 3(1) = 3
λ4 = 4λ = 4(1) = 4
λ5 = 5λ = 5(1) = 5
...

...

and that
µi = iµ = 2i for i = 0, 1, 2, . . . .

So, we have
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To find π0:

1 =
∞∑
n=0

πn = π0

[
1 +

1

2
+

1

4
+

1

8
+ 3

∞∑
n=4

1

n

(
1

2

)n]
· (1)

To do the sum, note that

ln(1− x) = −x− x2

2
− x3

3
− x4

4
− · · · == −

∞∑
n=1

1

n
xn

which implies that
∞∑
n=1

1

n
xn = − ln(1− x).

Thanks Justin!

So,
∞∑
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1
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=

∑∞
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1
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1
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= − ln(1/2)− 2
3 = ln(2)− 2

3

So (1) becomes
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2
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4
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8
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(
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3

)]
= ln 8− 1
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⇒ π0 =

[
ln 8− 1

8

]−1
≈ 0.5116

The proportion of time immigration is restricted is

∞∑
n=N

πn =
∞∑
n=3

πn

=
[
ln 8− 1

8

]−1 [
1
8 + 3

∑∞
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1
n

(
1
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)n]
=

[
ln 8− 1

8

]−1 [
1
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(
ln 2− 2

3

)]
≈ 0.1046

6. Let state 0 be that the machine is working and let state i, for i = 1, . . . , k be that the machine
is in repair stage i.

Then the generator matrix Q looks like this

Q =


−λ λ 0 0 0 · · · 0 0
0 −µ1 µ1 0 0 · · · 0 0
0 0 −µ2 µ2 0 · · · 0 0
... 0 0 0 0 · · · −µk−1 µk−1
µk 0 0 0 0 · · · 0 −µk


Now using the fact that if ~π = [π0, π1, . . .] is stationar y if and only if ~πQ = ~0, we peel off the
equations

−λπ0 + µkπk = 0

λπ0 − µ1π1 = 0

µiπi − µi+1πi+1 = 0, i = 1, 2, . . . , k − 1.

Combine these in this way:

µiπi = µi−1πi−1 = µi−2πi−2 = · · · = λπ0

Therefore

πi =
λ

µi
π0,

so
k∑
i=0

πi =

[
1 +

k∑
i=1

λ

µi

]
π0.

So, we have that

π0 =

[
1 +

k∑
i=1

λ

µi

]−1
and, for i = 1, 2, . . . , k,

πi =
λ

µi
π0.



(a)
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λ
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[
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λ
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]−1

(b)

π0 =

[
1 +

k∑
i=1

λ

µi

]−1


