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1 Introduction
There is a special fascination associated with problems which

1. are very easy to pose
2. the final answer is unexpected, but still has a very clear form

3. the process to arrive at this answer is lengthy and requires input
from diverse sources (and the solution process has helpalto advance
| the investigative tools employed).

Although there may be many more surprises left, and several technical
details in the present models are extremely complex, the problem of de-
{ termining the structure of steady incompressible flows past ‘simple’ blunt
bodies (like a cylinder, a sphere, a flat plate perpendicular to free stream,
arrays of such bodies etc.} can be said to fall in this category.

In spite of the fact that experiments become time-dependent at rela-
tively low Reynolds numbers (due to instabilities), there are several reasons
for studying steady (unstable) flow fields at high Re:

1. To better understand how fluids can ‘behave’, it is important to char-
acterise a selection of generic flow situations (for example, the form
of steady wakes was not theoretically anticipated, but it connects
together many older theoretical results).

2. A powerful technique to find (and then possibly exploit) novel flow

t regimes is to first determine steady solutions with methods immune

, to instabilities and then separately analyze their (in-)stabilities. As

| an example flow past a sphere may be possible to stabilise with flow

( control methods—for reductions in drag of one to two orders of mag-
nitude.

3. Each of the three major investigative techniques—experiment, the-

ory and computer simulation—have been applied in many attempts

( to reach high Reynolds numbers. For the latter two approaches in
, particular, the flow past blunt bodies has served as a sufficiently chal-

, lenging problem to promote significant advances in the techniques
“, themselves.
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116 Computing steady incompressible flows past blunt bodies

4. From a numerical perspective, the problem is especially interesting
because the insights gained from computing have not been merely
quantitative, but highly qualitative as well. With no need to impose
any preconceived notions on the form of the solution {as would com-
monly be needed with, say, asymptotic analysis), unexpected phe-
nomena can be found.

An in-depth study of this subject is far beyond the scope of this brief
presentation. In very broad terms, we will outline a few past studies in
order to illustrate how experiment, theory and computations—helping each
other along—have led to our current understanding of steady high-speed
fiow solutions to the incompressible Navier-Stokes equations. The focus
will primarily be on computations. Some key theoretical and experimental
studies will be mentioned briefly.

During the last six decades that numerical techniques have been applied
to this problem, the computational resources available to the different in-
vestigators have increased from several years on a mechanical hand calcu-
Jator to several hundred hours on a Cray supercomputer—approximately
a factor of 108. The numerical algorithms themselves have also improved
dramatically. However the corresponding gain in Reynolds number {Re)
has only been a factor of about 20. Although limited, it is enough for us to
reach a flow regime where a combination of some further asymptotics and
numerics might resolve the structure of the flows for all Re. {On the other
hand, this was also believed—erroneously—50 years ago. . )

2 Background

Chart 1 schematically illustrates steady flows at low Reynolds numbers {a
non- dimensional quantity Re=Ud/v where U is the free stream viscosity,
d is the body diameter and » the kinematic velocity). In the case of a
cylinder, the first instability (for increasing Re) is a ‘Hopf bifurcation’-—
the wake starts to oscillate across the centreline and ultimately begins
shedding a row of vortices downstream. In the case of a sphere, both the
critical Re and the nature of the first instability are less clear (cf. Taneda
1956, Nakamura 1976). For the reasons outlined in the introduction, we
are interested in the steady (but unstable) solutions at still higher values
of Re for these problems.

Chart 2 shows the governing equations for 2-D in the streamfunction-
vorticity form. This form is convenient also for axi-symmetric 3-D problems
but not practical in general 3-D. Although Newton (1687) and Daniel and
Johann Bernoulli {both in 1738) discussed laws for fluid motion, the first
complete description was obtained by Euler in 1755, for inviscid flow. Sub-
sequently, the viscous terms were obtained independently by Navier (1822)
and Stokes {1845). ,

Bengt Fornberg 117

Several closed form solutions are known to both Navier-Stokes {NS)
and Euler equations. Those listed at the top of Chart 3 do not describe
any common flow situations (but are still sometimes useful in testing NS
solvers). Kovasznay (1948} suggested that his solution might describe the
closure of wakes for flow past a periodic array of bodies (although this now
appears unlikely). A similar solution, possibly relevant to the closure of
wide wakes (Peregrine, 1985), was given by Jeffery (1915).

In 2-D Euler sclutions for irrotational flows (w = 0}, the streamfunction
satisfies Laplace’s equation. The invariance of this equation under confor-
mal mappings provides a simple method to generate Euler flows past many
bodies, e.g. the attached flow past a cylinder (top left, Chart 4). Although
a solution for Re=oo, this is very unlikely to represent a limit for Re— oo.
If it were, the boundary layer equations for the front surface would develop
a singularity around 110° from the stagnation peint, an event typically
associated with a boundary layer separation. Helmholtz (1868) intzoduced
the idea of vortex sheets—slip planes in the fluid—and found that, using
them as additional ‘building blocks’, more realistic Euler solutions could be
obtained. An example of this is the flow past a flat plate due to Kirchhoff,
1869.

Another class of Euler solutions is shown in the lower half of Chart 4.
These will prove to be of particular interest in modelling wakes. [t is easy
{o see that two point vortices—of equal strength but with opposite sign—
will induce matching velocities on each other, and the pair will translate
with constant velocity through ideal fluid. Instead of considering infinite
vorticity spread over zero area, we can find translating solutions with piece-
wise constant vorticity spread over finite areas. If the areas are small, their
shapes will be nearly circular. The extreme case—that of the two areas
meeting along a stretch of the centreline—has one free parameter. Chang-
ing this parameter will affect the translation speed, level of vorticity and
size of the vortex pair—but will leave the shape invariant. In particular,
the aspect ratio length/width is a constant, approximately 1.6691. Curi-
ously, the equivalent 3-D axi-symmetric solution is much simpler; the Hill's
spherical vortex (Hill, 1894) is indeed perfectly spherical, has w inside it
proportional to the distance to the symmetry axis and outside it w = 0.
Vortex sheets can be added at the edges of these translating solutions to
provide one additional free parameter; such solutions in 2-D were described
(and calculated) by Sadovskii (1971).

3 Some developments on the flow problem

Chart b gives a time line of some notable contributions to the problem. If
the experiments look under-represented here, we should bear in mind that
one of the most intriguing aspects of this problem is just how inaccessible
it is to experimental investigations.
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The first numerical contribution quoted here, Richardson’s pioneering
paper of 1910, does not specifically address flow problems. I think, however,
it is here that a numerical ‘story’ should start. Two quotes from Richard-
son’s introduction illustrate how new the concept of finite differences was
at this time:

Step-by-step arithmetical methods of solving ordinary differ-
ence egquations have long been employed for the calculation of
interest and annuities. Recently their application lo differential
equations has been very grestly smproved by the introduction of
rules allied to those for approzimate quadrature.

The extension to three variables is, however, perfectly obui-
ous. One has only lo let the third variable be represented by the
number of the page of a book of lracing paper.

As a first example of finite difference (FD) schemes, Richardson chose
the heat equation (Chart 6), proposed an explicit ‘leap-frog-type’ scheme
and calculated the solution for five time steps (using a rather inaccurate
approximation to the analytical solution on the second time level to get
started). As late as 1937, Richardson’s scheme for the heat equation was
referred to without any fundamental flaws being recognised (Hartree et
al.; the now famous 1928 paper by Courant, Friedrichs and Lewy was not
much noted at the time by the numerical community since it discussed FD
schemes only as tools for existence proofs, ¢f. Lax 1967). Richardson was
in this 1910 paper close to discovering (and if so, quite certainly also suc-
cessfully analyzing) the phenomenon of numerical instabilities. The figure
below the table on Chart 6 shows the errors at the grid points throughout
the first 20 time steps. Had he been able to afford these additional 15 time
steps {or had he proceeded just 10 time steps from a more accurate second
time level), a key area in numerical analysis could have been advanced by
some three decades.

The highlight of the 1910 paper was a FD solution (by a relaxation
method) of the elastic equations for a complex geometry. This study was
prompted by the recent failure of a dam similar to the (first) dam just built
across the Nile at Asswan.

In 1923, Brodetsky generalised Kirchhofl’s {ree streamline solution past
& flat plate to the case of a cylinder. The primary difficulty was that the
location of the separation point was no longer known. Assuming tangential
separation, a unique solution was found with a wake opening up paraboli-
cally to downstream infinity. (Neither Kirchhoff nor Brodetsky considered
Re— oo issues or the possibility of non-uniform vortex sheets)

The next ‘landmark’ contributions—both numerical and experimental—
were by Thom (1927 and 1933, Chart 7). The steady flow for Re=10 was
calculated using FD on a rectangular grid (using interpolation at the cylin-
der surface). During this work a ‘different method of procedure presented

. S -
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itself’ (Thom, 1933). For the case Re=20, the NS equations were confor-
mally mapped to a simpler domain {on which mesh refinement was used in
critical regions), with exceptional accuracy being obtained.

Thom experimentally observed wakes which lengthened uatil a Karman
vortex street began to develop around Ress 4060 (sometimes slightly de-
layed by the channel geometry). The 1964 experimental study by Grove
et al reached Re=300 (also in a channel geometry) by placing a horizontal
flat plate at the stagnation point at the rear of the wake. The idea of this
was to stabilise the flow without otherwise affecting it much. However the
longest wake observed (at Re=300) had a length of only L=11, compared
to 1.=40.8 which is now calculated for that case.

A series of theoretical studies, starting with Squire in 1934 (e.g. Imai
1953, Kawaguti 1953, Sychev 1967, 1972, Messiter 1975, Smith 1979, 1983)
supported the idea of slender elliptic wakes tending towards Brodetsky’s
free streamline model (with the internal wake pressure approaching that of
the undisturbed flow). The ‘triple deck’ model in the 1970’s represented
a major advance in the understanding of the nature of fluid separation at
the body. However, a problem concerning the closure of the slender wake
was never successfully resolved in these models.

Three studies which disagreed with the long and slender wake concept
are particularly noteworthy:

The 1955 study by Allen and Southwell (Chart 8) was carried out at a
time when relaxation methods seemed almost limitless in their power and
scope. It was very easy at that time to let enthusiasm for numerical results
dominate over less exciting error-control issues—especially since the solu-
tions looked very reasonable (and appeared to resolve some key theoretical
difficulties). The particular significance of this study from a numerical
point of view was the novel method employed for the derivation of quite
accurate upwind schemes, a powerful and still often used technique.

A year later (1956), Batchelor proposed a wake model that was very
reminiscent of the (erroneous) small wakes calculated by Allen and South-
well. No reference was made to their paper—Batchelor’s arguments are
strictly theoretical. This study is again one that, although questionable
in some key conclusions, contained profound new insights in that it high-
lighted flaws in the prevalent model. The suggestion for 3-D—a Hill’s
spherical vortex—is now numerically confirmed (apart from the fact that
its size does not appear to remain bounded).

In 1968, Taganoff proposed a model with both length and width of
order Re. He then asked Sadovskii to calculate the relevant Euler solutions
(cf. the conclusions of the previous chapter and Chart 4). Taganoff’s work
(available only in Russian) was not noted in the West and was largely
ignored in the East (as it was rather heuristic, went against the general
views at the time and was followed up with some less good further proposals
in subsequent papers).
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By the time of my own first computation in this area (1980, Chart 9),
the general consensus was strongly in favour of long and slender wakes.
The calculation was made possible by some fortunate circumstances:

¢ During the preceding few years, the direct use of Newton’s method
on 2-D FD approximations had proven very successful.

¢ The first vector-supercomputers (CDC Star 100 and Cray 1) were
becoming available.

® There was an increasing awareness of the critical role played by far-
field boundary conditions (and the need to develop new and accurate
approximations that could be used very close to the edge of the wake).

With Newton’s method, accurate steady solutions could for the first time
be obtained in time-unstable situations (since its quadratic convergence
prevents any temporal-type instabilities from developing in the artificial
time of the numerical iterations). As a complete surprise, my computations
revealed a transition to a much wider wake structure around Re=300. The
mechanism for this could be seen clearly, as vorticity started to be convected
by the recirculating stream into the wake from its rear. Since this change of
trend was unexpected, more error testing and computational refinements
were called for. By 1983 (Chart 10), it was clear that the decrease in
wake length seen around Re=300 was not correct—but the observation
of the transition to wide wakes {and the mechanism behind this) stayed
firm.(The excelient m.w = (.17 estimate by Smith (1979) was derived for
slender wakes—ils agreement with the numerics is somewhat surprising).

These wide wakes were subsequently discussed theoretically (in rather
general terms) by Peregrine in 1981 and (in more detail) by Smith in 1985.
The studies by Chernyshenko (1988; for rows of cylinders in 1992) would
appear to be the most successful efforts so far in fitting together a complete
picture for this problem. The wake appears to be of the type originally
outlined by Taganoff (with vortex sheets being rather insignificant). Very
schematically, it consists of a translating Euler-type solution of a size and
at a distance from the body adjusted in such a way that:

1. it travels with the same speed as the body;

2. the viscous dissipation of the vorticity in the wake matches the amount
generated on the body surface.

Chart 11 shows a similar calculation for a sphere—and the resulting
Hill’s spherical vortex wake. Although such a vortex is known to be un-
stable (Pozrikidis, 1986), the instabilities are quite ‘gentle’ and stabilising
flow control might just be possible. Many moving objects (e.g. a golf ball)
move at Reynolds numbers close to where the drag suddenly drops. The
dimples on its surface induce boundary layer turbulence, thereby delaying
the separation and significantly lowering the drag. However, extrapolation
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of the calculated drag for steady flows show that the blunt body drag can
be lower still, comparable to that for streamlined bodies.

Since the wake becomes wide for flow past a single body, the question
of what happens in the case of a row of bodies is particularly intriguing
(for references, see the introduction in Ingham et al 1990). With Re and
W as free parameters, one might expect singular points in the Re-W-plane.
So far, none have been found. Chart 12 shows an example of how the wake
changes character when W is increased for a fixed value of Re.

Qualitatively, the wide wakes secem to be rather independent of the
shape of the body. Chart 13 shows how flat plates canse much longer (but
otherwise similar) wakes than cylinders. This calculation used Newton’s
method with biquadratic Finite Elements (a combination that proved to be
more cost-effective than Newton + 2"? order FD that 1 had used earlier).

4 Possible future developments, conclusions

Unstructured grids have not yet been used for incompressible flows to the
same extent that they have been used for compressible flows. But other ma-
jor developments—not yet exploited elsewhere—also seem possible. Chart
14 outlines one particularly promising approach allowing a ‘black box’ code
for a time- stepping algorithm to be used to obtain steady flows for values
of Re where time stepping alone diverges. Shroff and Keller (1991) further
describe how ‘arc-length continuation’ can be used to follow solution paths
through turning- and bifurcation points (as for regular Newton codes).

Even if the flow fields we now sce represent the ultimate asymptotic
wake structure for steady flows, further challenges remain:

Experiment: - Possible applications for (active} flow control methods.

Theory: - Although the leading terms now seem plausible, many
questions remain.

Computation: - Major opportunities in improved algorithms, parallel
computing etc.

For all these three investigative techniques, 1 believe this problem will con-
tinue to offer a very fruitful field for further explorations and improvements
of methodologies.
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Compuling steady incompressible flows past blunt bodies
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SOME CLOSED FORM SOLUTIONS TO NAVIER-STOKES EQUATIONS

Use Re instead of Re/2 in earlier definition of the NS squations
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1927 Thom COMPUTATION AND EXPERIMENT
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Chart 7. Thom (1927, 1933)
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COMP! 10N
11955 Allen & Southwell | UTATI
Streamfunction - vorticity formulation
Same mapping as used by Thom -— ]
Upwinding - original strategy: ;.00 eq. for
[Nl ] vort. transp-diff VI VY "R
' yT 5-point 1 N equilibrium: LA A S
! stencil |
1 , )
' »  Separate inta ,
H . L]
" h m two equations: M« + :m - A
i h ﬂw" B2 = -
X '
1
" I Assume A, M, A locally constant. Solve each eq. above in
o , closed form. Eliminate A. Gives linear 5-point FD stencil.
Model equation: By v E9 v aalves
Allen - Southwell s
approximation: = b (P § sty
ae
For h-> O: ! #
L I IV SR Y Al/y = o
1 -
For h large: Upwind directed 3-point formula

For all h : DIAGONALLY DOMINANT

+ Enhances convergence of relaxation-type methods
+ Prevents selutions from developing mesh-size oscillations
— Lower accuracy than centered scheme at finite h.

Many later refinements to upwinding:

C> Stronger diagonal dominance
=S Higher orders of formal accuracy

Chart 8. Allen and Southwell (1955)
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_ 1980 Fornberg | COMPUTATION

[> Replace relaxation methods by Newton's method; keep Finite Ditfarences

For Scaler Equations: For Systams: SimMar lerarion:
fx}-0 ) < &
x, Close Guess gluy.z) -0 &ou o a; e
* o) hxy,2)=0 & By ot * vzt
LA ._,_..__.._.. n=012,.. By 8 B
— X ¥ A = - ¥
.13 &y &z Y ey
Gan me: KLILREC LN | [ .
e - %, = W) x By &2 e
Update  Known, s .
Known -
oo En Residual Known, Updata Known,

[> Quadratic convergence: On NxN-grid, costs OAZJ operations/iteration.

[> No possibliity to ‘inherit' temporal instabilities into artificial time of numerical

iterations
[> Easler to Implement boundary conditions

[> Centered, 2" order FD instead of 'upwinding'
Upwinding previously needed lor two reasons:
- Enhance convergence - Prevent mesh-size oscillations

STREAMFUNCTION VORTICITY

00 EEESEE====—= __

T % 5 10 15 2 2 30 33 40 45 50

D5 10 15 20 25 30 35 40 45 %

200 200 m_mﬂaaamuﬂipwvmsas
300 300
WIDTH OF WAKE BUBBLE LENGTH OF WAKE BUBBLE
4 m wf ®
1 : .-,
3 m 30 e
m~ i . \
m 1 m 10 -\.\..
T 700290 260 280 300 R L YRR BT 290 50 Re
Chart 9. Fornberg {1980)
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[1983,1985, 1991 BF|

ERROR WITH DECREASING WAKE
LENGTH CORRECTED

Fram {1983 BF

Line mm -R..m_u wair,’

F. T. smim dt379),”

- /

Present

@ % calcwol e

5

3

F

Nl

5 1wl Fornotry (19801

£

&

@ Gushchin B

-

Schevwiney (1974}

,. Aler 8 Soullet)] (1935)

1
Q 100 200 300 400 500
Reynolds number

Chart 10. Fornberg (1983, 1085, 1991)

1 1 1

COMPUTATIONS

WAKES AT HIGH VALUES GF Re

From | 1985 BF

.u.um..m._.: H%Llwmﬂ

RN

DISTRIBUTION OF VORTICITY IN

THE WAKE From 1991 BF 0.

1988 BF FLOW PAST A SPHERE COMPUTATION

STREAM FUNCTICN
100

Chart 11, Fornberg (1988)

VORTICITY
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1991 BF COMPUTATION

+ SEPARATION (W) Re = BOO

FLOW PAST A ROW OF
CYLINDERS 100

! —_—
e rer————r S

1510 20 20 40 S0 60 7¢ mo 80 100 110

40 i A

-p 1510720 %0 60 50 60 70 B0 S0 100 11D
- J—————————
\I||||I|I|n|,l,:lll|’

-p 30 g : ; “m
2030 40 5 60 70 80 90 16p 1y

- D) e -
T510 20 3¢ 40 50 60 70 € ® 100 1%

- _
e — - e ———

- e i i T
-

15

- 1510 20 30 40 50 80 70 8 % 100 110

LU e e ———
0 151020 20 40 5 60 70 80 80 100 O

v et ———— e —————
& 1510 20 30 40 50 & 70 B0 50 100 110

Chart 12, Fornberg (1991)

[1992 Natarajan, BF, Acrivos | COMPUTATION

Newton's method - bi-quadratic Finite Elements

Distribution of vorticity
in the wake

Cylinders

Flat plates

[orthagenal to incoming flow)

Chart 13. Natarajan, Fornberg, Acrivos (1982)
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11991 Shroff, Keller | NUMERICAL METHOD

STABILIZATION OF UNSTABLE PROCEDURES: A HYBRID ALGORITHM FOR CONTINUATION

HAVE: Time dependsnt 'black box' code: {and nothing else;
black box expensive -
need o keep number
of evaluations low)

EA Pty

u”- G(u™ R)

WANT. To find steady-state solutions G( U, R) = 0
in regimes (for high R) where iterations diverge.

CONSIDER: Jjacabian of black box { - G,

Eigenvalues: —

Converges OK
n-m eig.val,

Diverges
IDEA: Decompose R” into Slow conv.

orthogonal subspaces: m eig.val.,
m<<n
PIR" dim m 4— Newton
QR" dim n-m 4— Black box update
Use Krylov technique + QR to keep subspace current

POTENTIAL ADVANTAGES:

> Low cost per iteration
size of linear system prop. to 7 (cor. to number of physically
unstable modes) rather than n (corr. to number of grid points -
typically many orders of magnitude larger)

c> Sparsity pattern in Jacobian of no consequence
method effective on unstructured grids and in 3-D

> Method well suited for parallel computing
domain decomposition straightforward for computationally most
expensive part (the 'black box' solver)

Chart 14. Shroff, Keller (1991)
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