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Higher-order simplicial synchronization of coupled
topological signals
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Simplicial complexes capture the underlying network topology and geometry of complex

systems ranging from the brain to social networks. Here we show that algebraic topology is a

fundamental tool to capture the higher-order dynamics of simplicial complexes. In particular

we consider topological signals, i.e., dynamical signals defined on simplices of different

dimension, here taken to be nodes and links for simplicity. We show that coupling between

signals defined on nodes and links leads to explosive topological synchronization in which

phases defined on nodes synchronize simultaneously to phases defined on links at a dis-

continuous phase transition. We study the model on real connectomes and on simplicial

complexes and network models. Finally, we provide a comprehensive theoretical approach

that captures this transition on fully connected networks and on random networks treated

within the annealed approximation, establishing the conditions for observing a closed

hysteresis loop in the large network limit.
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H igher-order networks1–4 are attracting increasing atten-
tion as they are able to capture the many-body interac-
tions of complex systems ranging from brain to social

networks. Simplicial complexes are higher-order networks that
encode the network geometry and topology of real datasets. Using
simplicial complexes allows the network scientist to formulate
new mathematical frameworks for mining data5–10 and for
understanding these generalized network structures revealing the
underlying deep physical mechanisms for emergent
geometry11–15 and for higher-order dynamics16–33. In particular,
this very vibrant research activity is relevant in neuroscience to
analyze real brain data and its profound relation to
dynamics1,6,15,34–37 and in the study of biological transport
networks10,38.

In networks, dynamical processes are typically defined over signals
associated to the nodes of the network. In particular, the Kuramoto
model39–43 investigates the synchronization of phases associated to
the nodes of the network. This scenario can change significantly in
the case of simplicial complexes16,17,19. In fact, simplicial complexes
can sustain dynamical signals defined on simplices of different
dimension, including nodes, links, triangles, and so on, called topo-
logical signals. For instance, topological signals defined on links can
represent fluxes of interest in neuroscience and in biological trans-
portation networks. The interest on topological signals is rapidly
growing with new results related to signal processing17,19 and higher-
order topological synchronization16,28. (Note that here higher-order
refers to the higher-order interactions existing between topological
signals and not to higher-order harmonics.) In particular, higher-
order topological synchronization16 demonstrates that topological
signals (phases) associated to higher dimensional simplices can
undergo a synchronization phase transition. These results open a
new uncharted territory for the investigation of higher-order
synchronization.

Higher-order topological signals defined on simplices of dif-
ferent dimension can interact with one another in non-trivial
ways. For instance, in neuroscience the activity of the cell body of
a neuron can interact with synaptic activity which can be directly
affected by gliomes in the presence of brain tumors44. In order to
shed light on the possible phase transitions that can occur when
topological signals defined on nodes and links interact, here we
build on the mathematical framework of higher-order topological
synchronization proposed by Millán et al.16 and consider a syn-
chronization model in which topological signals of different
dimension are coupled. We focus in particular on the coupled
synchronization of topological signals defined on nodes and links,
but we note that the model can be easily extended to topological
signals of higher dimension. The reason why we focus on topo-
logical signals defined on nodes and links is threefold. First of all
we can have a better physical intuition of topological signals
defined on nodes (traditionally studied by the Kuramoto model)
and links (like fluxes) that is relevant in brain dynamics44,45 and
biological transport networks10,38. Secondly, although the cou-
pled synchronization dynamics of nodes and links can be con-
sidered as a special case of coupled synchronization dynamics of
higher-order topological signals on a generic simplicial complex,
this dynamics can be observed also on networks including only
pairwise interactions. Indeed nodes and links are the simplices
that remain unchanged if we reduce a simplicial complex to its
network skeleton. Since currently there is more availability of
network data than simplicial complex data, this fact implies that
the coupled dynamics studied in this work has wide applicability
as it can be tested on any network data and network model.
Thirdly, defining the coupled dynamics of topological signals
defined on nodes and links can open new perspectives in
exploiting the properties of the line graph of a given network

which is the network whose nodes corresponds to the links or the
original network46.

In this work, we show that by adopting a global adaptive
coupling of dynamics47–49 the coupled synchronization dynamics
of topological signals defined on nodes and links is explosive50,
i.e., it occurs at a discontinuous phase transition in which the two
topological signals of different dimension synchronize at the same
time. We also illustrate numerical evidence of this discontinuity
on real connectomes and on simplicial complex models, including
the configuration model of simplicial complexes51 and the non-
equilibrium simplicial complex model called Network Geometry
with Flavor (NGF)12,13. We provide a comprehensive theory of
this phenomenon on fully connected networks offering a com-
plete analytical understanding of the observed transition. This
approach can be extended to random networks treated within the
annealed network approximation. The analytical results reveal
that the investigated transition is discontinuous.

Results and discussion
Higher-order topological Kuramoto model of topological sig-
nals of a given dimension. Let us consider a simplicial complex
K formed by N[n] simplices of dimension n, i.e., N[0] nodes, N[1]
links, N[2] triangles, and so on. In order to define the higher-order
synchronization of topological signals we will make use of alge-
braic topology (see the Appendix for a brief introduction) and
specifically we indicate with B[n] the nth incidence matrix
representing the nth boundary operator.

The higher-order Kuramoto model generalizes the classic
Kuramoto model to treat synchronization of topological signals of
higher-dimension. The classic Kuramoto model describes the
synchonization transition for phases

θ ¼ ðθ1; θ2; ¼ θN ½0$
Þ ð1Þ

associated to nodes, i.e., simplices of dimension n= 0 (see Fig. 1).
The Kuramoto model is typically defined on a network but it can
treat also synchronization of the phases associated to the nodes of
a simplicial complex. Each node i has associated an internal
frequency ωi drawn from a given distribution, for instance a

Fig. 1 Schematic representation of the Kuramoto and the higher-order
topological synchronization model. Panel a shows a network formed by
nodes and links in which nodes (blue circles numbered from 1 to 8) sustain
a dynamical variable (a phase θi with i∈ {1, 2, …, 8}) whose synchronization
is captured by the Kuramoto model. Panel b shows a simplicial complex
formed by nodes, links, and triangles (here shaded in orange) in which not
only nodes but also links sustain dynamical variables (indicated θi for the
nodes i∈ {1, 2, …, 8} and ϕij for the links [i, j] with i, j∈ {1, 2, …, 8}) whose
coupled synchronization dynamics is captured by the higher-order
topological Kuramoto model.
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normal distribution ωi & N ðΩ0; 1=τ0Þ. In absence of any
coupling, i.e., in absence of pairwise interactions, every node
oscillates at its own frequency. However in a network or in a
simplicial complex skeleton the phases associated to the nodes
follow the dynamical evolution dictated by the equation:

_θ ¼ ω' σB½1$ sin B>
½1$θ

! "
; ð2Þ

where here and in the following we use the notation sinðxÞ to
indicate the column vector where the sine function is taken
elementwise. Note that here we have chosen to write this system
of equations in terms of the incidence matrix B[1]. However if
we indicate with a the adjacency matrix of the network and
with aij its matrix elements, this system of equations is
equivalent to

_θi ¼ ωi þ σ ∑
N

j¼1
aij sinðθj ' θiÞ; ð3Þ

valid for every node i of the network. For coupling constant σ
= σc the Kuramoto model39–41 displays a continuous phase
transition above which the order parameter

R0 ¼
1

N ½0$
∑
N ½0$

i¼1
eiθi

#####

##### ð4Þ

is non-zero also in the limit N[0]→∞.
The higher-order topological Kuramoto model16 describes

synchronization of phases associated to the n dimensional
simplices of a simplicial complex. Although the definition of
the model applies directly to any value of n, here we consider
specifically the case in which the higher-order Kuramoto
model is defined on topological signals (phases) associated to
the links

ϕ ¼ ðϕ‘1 ; ϕ‘2 ; ¼ ϕ‘N ½1$
Þ; ð5Þ

where ϕ‘r indicates the phase associated to the rth link ℓr of the
simplicial complex (see Fig. 1). The higher-order Kuramoto
dynamics defined on simplices of dimension n > 0 is the natural
extension of the standard Kuramoto model defined by Eq. (2).
Let us indicate with ~ω the internal frequencies associated to the
links of the simplicial complex, sampled for example from a
normal distribution, ~ω‘ & N ðΩ1; 1=τ1Þ. The higher-order
topological Kuramoto model is defined as

_ϕ ¼ ~ω' σB>
½1$ sinðB½1$ϕÞ ' σB½2$ sinðB

>
½2$ϕÞ: ð6Þ

Once the synchronization dynamics is defined on higher-order
topological signals of dimension n (here taken to be n= 1) an
important question is whether this dynamics can be projected on
(n+ 1) and (n− 1) simplices. Interestingly, algebraic topology
provides a clear solution to this question. Indeed for n= 1, when
the dynamics describes the evolution of phases associated to the
links, one can consider the projection ϕ[−] and ϕ[+], respectively,
on nodes and on triangles defined as

ϕ½'$ ¼ B½1$ϕ;

ϕ½þ$ ¼ B>
½2$ϕ:

ð7Þ

Note that in this case B[1] acts as a discrete divergence and B>
½2$

acts as a discrete curl. Interestingly, since the incidence matrices
satisfy B[1]B[2]= 0 and B>

½2$B
>
½1$ ¼ 0 (see “Methods”) these two

projected phases follow the uncoupled dynamics

_ϕ
½'$ ¼ B½1$~ω' σL½0$ sinϕ

½'$;

_ϕ
½þ$ ¼ B>

½2$~ω' σL down
½2$ sinϕ½þ$;

ð8Þ

where L½0$ ¼ B½1$B
>
½1$ and L down

½2$ ¼ B>
½2$B½2$. These two projected

dynamics undergo a continuous synchronization transition at
σc= 016 with order parameters

R down
1 ¼

1
N ½0$

∑
N ½0$

i¼1
eiϕ

½'$
i

#####

#####;

R up
1 ¼

1
N ½2$

∑
N ½2$

i¼1
eiϕ

½þ$
i

#####

#####:
ð9Þ

In Millán et al.16 an adaptive coupling between these two
dynamics is considered formulating the explosive higher-order
topological Kuramoto model in which the topological signal
follows the set of coupled equations

_ϕ ¼ ~ω' σR up
1 B>

½1$ sinðB½1$ϕÞ

'σR down
1 B½2$ sinðB

>
½2$ϕÞ:

ð10Þ

The projected dynamics on nodes and triangles are now
coupled by the modulation of the coupling constant σ with the
order parameters R down

1 and R up
1 , i.e. the two projected phases

follow the coupled dynamics

_ϕ
½'$ ¼ B½1$~ω' σR up

1 L½0$ sinϕ
½'$;

_ϕ
½þ$ ¼ B>

½2$~ω' σR down
1 L down

½2$ sinϕ½þ$:
ð11Þ

This explosive higher-order topological Kuramoto model
has been shown in Millán et al.16 to lead to a discontinuous
synchronization transition on different models of simplicial
complexes and on clique complexes of real connectomes.

Higher-order topological Kuramoto model of coupled topo-
logical signals of different dimension. Until now, we have
captured synchronization occurring only among topological
signals of the same dimension. However, signals of different
dimension can be coupled to each other in non-trivial ways. In
this work we will show how topological signals of different
dimensions can be coupled together leading to an explosive
synchronization transition. Specifically we focus on the cou-
pling of the traditional Kuramoto model [Eq. (2)] to a higher-
order topological Kuramoto model defined for phases asso-
ciated to the links [Eq. (6)]. The coupling between these two
dynamics is here performed considering the modulation of the
coupling constant σ with the global order parameters of the
node dynamics [defined in Eq. (4)] and the link dynamics
[defined in Eq. (9)]. Specifically, we consider two models
denoted as Model Nodes-Links (NL) and Model Nodes-Links-
Triangles (NLT). Model NL couples the dynamics of the phases
of the nodes θ and of the links ϕ according to the following
dynamical equations

_θ ¼ ω' σR down
1 B½1$ sinðB

>
½1$θÞ; ð12Þ

_ϕ ¼ ~ω' σR0B
>
½1$ sinðB½1$ϕÞ ' σB½2$ sinðB

>
½2$ϕÞ: ð13Þ

The projected dynamics for ϕ[−] and ϕ[+] then obeys

_ϕ
½'$ ¼ B½1$~ω' σR0L½0$ sinϕ

½'$; ð14Þ

_ϕ
½þ$ ¼ B>

½2$~ω' σL down
½2$ sinϕ½þ$: ð15Þ

Therefore the projection on the nodes ϕ[−] of the phases ϕ
associated to the links [Eq. (14)] is coupled to the dynamics of
the phases θ [Eq. (12)] associated directly to nodes. However
the projection on the triangles ϕ[+] of the phases ϕ associated
to the links is independent of ϕ[−] and of θ as well. Model NLT
also describes the coupled dynamics of topological signals
defined on nodes and links but the adaptive coupling captured

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00605-4 ARTICLE

COMMUNICATIONS PHYSICS | ����������(2021)�4:120� | https://doi.org/10.1038/s42005-021-00605-4 | www.nature.com/commsphys 3



by the model is different. In this case the dynamical equations
are taken to be

_θ ¼ ω' σR down
1 B½1$ sinðB

>
½1$θÞ; ð16Þ

_ϕ ¼ ~ω' σR0R
up
1 B>

½1$ sinðB½1$ϕÞ

'σR down
1 B½2$ sinðB

>
½2$ϕÞ:

ð17Þ

For Model NLT the projected dynamics for ϕ[−] and for ϕ[+]

obeys

_ϕ
½'$ ¼ B½1$~ω' σR0R

up
1 L½0$ sinϕ

½'$; ð18Þ

_ϕ
½þ$ ¼ B>

½2$~ω' σR down
1 L down

½2$ sinϕ½þ$: ð19Þ

Therefore, as in Model NL, the dynamics of the projection ϕ[−]

of the phases ϕ associated to the links [Eq. (18)] is coupled to the
dynamics of the phases θ associated directly to nodes [Eq. (16)]
and vice versa. Moreover, the dynamics of the projection of the
phases ϕ on the triangles ϕ[+] [Eq. (19)] is now also coupled with
the dynamics of ϕ[−] [Eq. (18)] and vice versa. Here and in
the following we will use the convenient notation (using the
parameter r) to indicate both models NL and NLT with the same
set of dynamical equations given by

_θ ¼ ω' σR down
1 B½1$ sinðB

>
½1$θÞ; ð20Þ

_ϕ ¼ ~ω' σR0 Rup
1

$ %r'1B>
½1$ sinðB½1$ϕÞ

'σ Rdown
1

$ %r'1
B½2$ sinðB

>
½2$ϕÞ;

ð21Þ

which reduce to Eq. (13) for r= 1 and to Eq. (17) for r= 2.
We make two relevant observations:

● First, the proposed coupling between topological signals of
different dimension can be easily extended to signals
defined on higher-order simplices providing a very general
scenario for coupled dynamical processes on simplicial
complexes.

● Second, the considered coupled dynamics of topological
signals defined on nodes and links can be also studied on
networks with exclusively pairwise interactions where we
assume that the number of simplices of dimension n > 1 is
zero. Therefore in this specific case this topological
dynamics can have important effects also on simple
networks.

We have simulated Model NL and Model NLT on two main
examples of simplicial complex models: the configuration model
of simplicial complexes51 and the NGF12,13 (see Fig. 2). In the
configuration model we have considered power-law distribution
of the generalized degree with exponent γ < 3, and for the NGF
model with have considered simplicial complexes of dimensions
d= 3 whose skeleton is a power-law network with exponent γ=
3. In both cases we observe an explosive synchronization of the
topological signals associated to the nodes and to the links. On
finite networks, the discontinuous transition emerge together
with the hysteresis loop formed by the forward and backward
synchronization transition. However the two models display a
notable difference. In Model NL we observe a discontinuity for R0

and R down
1 at a non-zero coupling constant σ= σc; however, R

up
1

follows an independent transition at zero coupling (see Fig. 2,
panels in the second and fourth column). In Model NLT, on the
contrary, all order parameters R0, R down

1 , and R up
1 display a

discontinuous transition occurring for the same non zero value of
the coupling constant σ= σc (see Fig. 2 panels in the first and
third column). This is a direct consequence of the fact that in
Model NL the adaptive coupling leading to discontinuous phase

transition only couples the phases ϕ[−] and θ, while for Model
NLT the coupling involves also the phases ϕ[+].

Additionally we studied both Model NL and Model NTL on
two real connectomes: the human connectome52 and the
Caenorhabditis elegans (C. elegans) connectome53 (see Fig. 3).
Interestingly also for these real datasets we observe that in Model
NL the explosive synchronization involves only the phases θ and
ϕ[−] while in Model NLT we observe that also ϕ[+] undergoes an
explosive synchronization transition at the same value of the
coupling constant σ= σc.

Theoretical solution of the NL model. As mentioned earlier the
higher-order topological Kuramoto model coupling the topolo-
gical signals of nodes and links can be defined on simplicial
complexes and on networks as well. In the following sections we
exploit this property of the dynamics to provide an analytical
understanding of the synchronization transition on uncorrelated
random networks.

It is well known that the Kuramoto model is challenging to
study analytically. Indeed the full analytical understanding of the
model is restricted to the fully connected case, while on a generic
sparse network topology the analytical approximation needs to
rely on some approximations. A powerful approximation is the
annealed network approximation41 which consists in approx-
imating the adjacency matrix of the network with its expectation
in a random uncorrelated network ensemble. In order to unveil
the fundamental theory that determines the coupled dynamics of
topological signals described by the higher-order Kuramoto
model here we combine the annealed approximation with the
Ott–Antonsen method43. This approach is able to capture the
coupled dynamics of topological signals defined on nodes and
links. In particular, the solution found to describe the dynamics of
topological signals defined on the links is highly non-trivial and it
is not reducible to the equations valid for the standard Kuramoto
model. Conveniently, the calculations performed in the annealead
approximation can be easily recasted in the exact calculation valid
in the fully connected case previous a rescaling of some of the
parameters. The analysis of the fully connected network reveals
that the discontinuous sychronization transition of the considered
model is characterized by a non-trivial backward transition with a
well defined large network limit. On the contrary, the forward
transition is highly dependent on the network size and vanishes
in the large network limit, indicating that the incoherent state
remains stable for every value of the coupling constant σ in the
large network limit. This implies that on a fully connected
network the NL model does not display a closed hysteresis loop as
it occurs also for the model proposed in Skardal and Arenas21.
This scenario is here shown to extend also to sparse networks
with finite second moment of the degree distribution while scale-
free networks display a well defined hysteresis loop in the large
network limit.

Annealed dynamics. For the dynamics of the phases θ associated
to the nodes—Eq. (20)—it is possible to proceed as in the tra-
ditional Kuramoto model42,54,55. However, the annealed
approximation for the dynamics of the phases ϕ defined in Eq.
(21) needs to be discussed in detail as it is not directly reducible to
previous results. To address this problem our aim is to directly
define the annealed approximation for the dynamics of the pro-
jected variables ϕ[−] which, here and in the following, are indi-
cated as

ψ ¼ ϕ½'$; ð22Þ

in order to simplify the notation. Moreover we will indicate with
N=N[0] the number of nodes in the network or in the simplicial
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complex skeleton. Here we focus on the NL Model defined on
networks, i.e., we assume that there are no simplices of dimension
two. We provide an analytical understanding of the coupled
dynamics of nodes and links in the NL Model by determining the
equations that capture the dynamics in the annealed approx-
imation and predict the value of the complex order parameters

R0e
iΘ ¼

1
N

∑
N

i¼1
eiθi ;

R down
1 eiΨ ¼

1
N

∑
N

i¼1
eiψi ;

ð23Þ

(with R0;R
down
1 ;Θ, and Ψ real) as a function of the coupling

constant σ.
We notice that Eq. (14), valid for Model NL, can be written as

_ψ ¼ B½1$~ω' σR0L½0$ sinðψÞ: ð24Þ

This equation can be also written elementwise as

_ψi ¼ ω̂i þ σR0 ∑
N

j¼1
aij sinðψjÞ ' sinðψiÞ
h i

; ð25Þ

where the vector ω̂ is given by

ω̂ ¼ B½1$~ω: ð26Þ

Let us now consider in detail these frequencies in the case in
which the generic internal frequency ~ω‘ of a link follows a
Gaussian distribution, specifically in the case in which ~ω‘ &
N ðΩ1; 1=τ1Þ for every link ℓ. Using the definition of the boundary
operator on a link it is easy to show that the expectation of ω̂i is

given by

ω̂i

& '
¼ ∑

j<i
aij '∑

j>i
aij

( )
Ω1: ð27Þ

Given that each node has degree ki, the covariance matrix C is
given by the graph Laplacian L[0] of the network, i.e.

Cij ¼ ω̂iω̂j

D E

c
¼ ∑

‘;‘0
½B½1$~ω$i½B½1$~ω$j
D E

c

¼
½L½0$$ij
τ21

¼
kiδij ' aij

τ21
;

ð28Þ

where we have indicated with ¼h ic the connected correlation.
Therefore the variance of ω̂ in the annealed approximation is

ω̂2
i

& '
c ¼ ω̂2

i

& '
' ω̂i

& '2 ¼ ki
τ21

: ð29Þ

Moreover, the projected frequencies are actually correlated and
for i ≠ j we have

ω̂iω̂j

D E

c
¼ ω̂iω̂j

D E
' ω̂i

& '
ω̂j

D E
¼ '

aij
τ21

: ð30Þ

It follows that the frequencies ω̂ are correlated Gaussian
variables with average given by Eq. (27) and correlation matrix
given by the graph Laplacian. The fact that the frequencies ω̂i are
correlated is an important feature of the dynamics of ψ and, with
few exceptions56, this feature has remained relatively unexplored
in the case of the standard Kuramoto model. Additionally let us
note that the average of ω̂ over all the nodes of the network is
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Fig. 2 The higher-order topological synchronization models coupling nodes and links on simplicial complexes. The hysteresis loop for the
synchronization order parameters R0, R

down
1 , and R up

1 are plotted versus σ for the higher-order topological synchronization Model Nodes-Links-Triangles
(NLT) (panels a, e, i and c, g, k) and Model Nodes-Links (NL) (panels b, f, j and d, h, l) defined over the Network Geometry with Flavor13 (panels a, e, i and
b, f, j) and the configuration model of simplicial complexes51 (panels c, g, k and d, h, l). The green lines indicate the backward transitions and the cyan
lines indicate the forward transitions. The Network Geometry with Flavor on which we run the numerical results shown in a, b, e, f, i, j includes N[0]= 500
nodes and has flavor s=−1 and d= 3. The configuration model of simplicial complexes on which we run the numerical results shown in c, d, g, h, k, l
includes N[0]= 500 nodes and has generalized degree distribution which is power-law with exponent γ= 2.8. In both Model NL and in Model NLT we have
set Ω0=Ω1= 2 and τ0= τ1= 1.
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zero. In fact

∑
N

i¼1
ω̂i ¼ 1Tω̂ ¼ 1TB½1$ω ¼ 0; ð31Þ

where with 1 we indicate the N-dimensional column vector of
elements 1i= 1. By using the symmetry of the adjacency matrix,
i.e. the fact that aij= aji, Eq. (31) implies that the sum of _ψi over
all the nodes of the network is zero, i.e.

∑
N

i¼1
_ψi ¼ ∑

N

i¼1
ω̂i þ σR0 ∑

i;j
aij½sinðψjÞ ' sinðψiÞ$ ¼ 0:

We now consider the annealed approximation consisting in
substituting the adjacency matrix element aij with its expectation
in an uncorrelated network ensemble

aij !
kikj
kh iN

; ð32Þ

where ki indicates the degree of node i and kh i is the average
degree of the network. Note that the considered random networks
can be both sparse57 or dense58 as long as they display the
structural cutoff, i.e. ki )

ffiffiffiffiffiffiffiffiffiffi
kh iN

p
for every node i of the network.

In the annealed approximation we can put

ω̂i

& '
’ kiΩ1 1' 2∑

j>i

kj
kh iN

( )
: ð33Þ

Also, in the annealed approximation the dynamical Eq. (20)
and Eq. (24) reduce to

_θ ¼ ω' σR down
1 R̂0k * sinðθ ' Θ̂Þ; ð34Þ

_ψ ¼ ω̂þ σR0R̂
down
1 k sin Ψ̂' σR0k + sinψ; ð35Þ

where ⊙ indicates the Hadamard product (element by element

multiplication) and where two auxiliary complex order para-
meters are defined as

R̂0e
iΘ̂ ¼ ∑

N

i¼1

ki
kh iN

eiθi ;

R̂
down
1 eiΨ̂ ¼ ∑

N

i¼1

ki
kh iN

eiψi ;

ð36Þ

with R̂0; Θ̂; R̂
down
1 and Ψ̂ real.

The dynamics on a fully connected network. On a fully con-
nected network in which each node has degree ki=N− 1 the
dynamics of the NL Model is well defined provided its parameter
are properly rescaled. In particular, we require a standard
rescaling of the coupling constant with the network size, given by

σ ! σ=ðN ' 1Þ ð37Þ

which guarantees that the interaction term in the dynamical
equations has a finite contribution to the velocity of the phases.

The Model NL on fully connected networks requires also some
specific model dependent rescalings associated to the dynamics
on networks. Indeed, in order to have a finite expectation ω̂i

& '
of

the projected frequencies ω̂i and a finite of the covariance matrix
C [given by Eqs. (27) and (28), respectively], we require that on a
fully connected network both Ω1 and τ1 are rescaled according to

Ω1 ! Ω1=N;

τ1 ! τ1
ffiffiffiffiffiffiffiffiffiffiffiffi
N ' 1

p
:

ð38Þ

Considering these opportune rescalings and noticing that the

order parameters obey R̂0 ¼ R0, R̂
down
1 ¼ Rdown

1 , Θ ¼ Θ̂, and
Ψ ¼ Ψ̂, we obtain that Model NL dictated by Eqs. (34)–(35) can
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Fig. 3 The higher-order topological synchronization models coupling nodes and links on real connectomes. The hysteresis loop for the synchronization
order parameters R0, R down

1 , and R up
1 are plotted versus σ on real connectomes. The green lines indicate the backward transitions and the cyan lines

indicate the forward transitions. Panels a, e, i and b, f, j show the numerical results on the human connectome52 for Model Nodes-Links-Triangles (NLT)
and Model Nodes-Links (NL) respectively. Panels c, g, k and d, h, l show the numerical results on the C. elegans connectome53 for Model NLT and Model
NL, respectively. In both Model NLT and in Model NL we have set Ω0=Ω1= 2 and τ0= τ1= 1.
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be rewritten here as
_θ ¼ ω' σR down

1 R0 sinðθ ' ΘÞ; ð39Þ

_ψ ¼ ω̂þ σR0R
down
1 sinΨ' σR0 sinψ; ð40Þ

with R0; R
down
1 ;Θ and Ψ given by Eq. (23) and

Cij ¼ ω̂iω̂j

D E

c
¼ δij '

1
N ' 1

: ð41Þ

Solution of the dynamical equations in the annealed
approximation
General framework for obtaining the solution of the annealed
dynamical equations. In this section we will provide the analytic
solutions for the order parameter of the higher-order topological
synchronization studied within the annealed approximation, i.e.,
captured by Eqs. (34) and (35). In particular, first we will find an
expression of the order parameters R0 of the dynamics associated
to the nodes (Eq. (34)) and subsequently in the next paragraph we
will derive the expression for the order parameter R down

1 asso-
ciated to the projection on the nodes of the topological signal
defined on the links (Eq. (35)). By combining the two results it is
finally possible to uncover the discontinuous nature of the
transition.

Dynamics of the phases of the nodes. When we investigate Eq. (34)
we notice that this equation can be easily reduced to the equation
for the standard Kuramoto model treated within the annealed
approximation42 if one performs a rescaling of the coupling
constant σR0→ σ. Therefore we can treat this model similarly to
the known treatment of the standard Kuramoto model40–42.
Specifically, starting from Eq. (34) and using a rescaling of the
phases θ according to

θi ! θi 'Ω0t; ð42Þ

it is possible to show that we can set Θ= 0 and therefore Eq. (34)
reduces to the well-known annealed expression for the standard
order Kuramoto model given by

_θ ¼ ω' Ω01' σR down
1 R̂0k * sinðθÞ: ð43Þ

Assuming that the system of equations reaches a steady state in
which both R down

1 and R̂0 become time independent, the order
parameters of this system of equations in the coherent state R̂0 > 0
and R down

1 > 0 can be found to obey40,42,50,54

R̂0 ¼ ∑
N

i¼1

ki
kh iN

Z

ĵcij<1
dωgðωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1'
ω'Ω0

σkiR̂0R
down
1

 !2
vuut ;

R0 ¼
1
N

∑
N

i¼1

Z

ĵcij<1
dωgðωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1'
ω'Ω0

σkiR̂0R
down
1

 !2
vuut ;

ð44Þ

where ĉi indicates

ĉi ¼
ω' Ω0

σkjR̂0R
down
1

: ð45Þ

and g(ω) is the Gaussian distribution with expectation Ω0 and
standard deviation 1.

Dynamics of the phases of the links projected on the nodes. In this
paragraph we will derive the expression of the order parameters

R down
1 and R̂

down
1 which, together with Eq. (44), will provide the

annealed solution of our model. To start with we assume that the
frequencies ω̂ are known. In this case we can express the order

parameters R down
1 and R̂

down
1 as a function of the probability

density function ρðiÞðψ; tjω̂Þ that node i is associated to a projected
phase of the link equal to ψ. Since in the annealed approximation
ψi has a dynamical evolution dictated by Eq. (35) the probability
density function obeys the continuity equation

∂tρ
ðiÞðψ; tjω̂Þ þ ∂ψ ρðiÞðψ; tjω̂Þ

%
vi

+ ,
¼ 0 ð46Þ

with associated velocity vi given by

vi ¼ κi ' σR0ki sinψi; ð47Þ

where we have defined κi as

κi ¼ ω̂i þ σkiR0R̂
down
1 sin Ψ̂: ð48Þ

In this case the complex order parameters are given by

R̂
down
1 eiΨ ¼ ∑

N

i¼1

ki
kh iN

Z
dψρðiÞðψ; tjω̂Þeiψ ;

R down
1 ei~Ψ ¼ ∑

N

i¼1

1
N

Z
dψρðiÞðψ; tjω̂Þeiψ :

ð49Þ

In order to solve the continuity equation we follow
Ott–Antonsen43 and we express ρðiÞðψ; tjω̂Þ in the Fourier basis as

ρðiÞðψ; tjω̂Þ ¼
1
2π

1þ ∑
1

m¼1
f̂
ðiÞ
m ðω̂i; tÞe

imψ þ c:c:
- .

: ð50Þ

Making the ansatz

f̂
ðiÞ
m ðω̂i; tÞ ¼ ½biðω̂i; tÞ$

m ð51Þ

we can derive the equation for the evolution of bi ¼ biðω̂i; tÞ given
by

∂tbi þ ibiκi þ σkiR0
1
2
ðb2i ' 1Þ ¼ 0: ð52Þ

Since we showed before that the average value of _ψi over nodes
is zero, we look for non-rotating stationary solutions of Eq. (52),
∂tbi= 0. As long as R0 > 0 these stationary solutions are given by

bi ¼ 'idi ±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1' d2i

q
; ð53Þ

where di is given by

di ¼
ω̂i

σkiR0
þ R̂

down
1 sin Ψ̂: ð54Þ

By inserting this expression into Eq. (49) we get the expression
of the order parameters given the projected frequencies ω̂, in the
coherent phase in which R0 > 0

R̂
down
1 cos Ψ̂ ¼ ∑

N

i¼1

ki
kh iN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1' d2i

q
θð1' d2i Þ;

R̂
down
1 sin Ψ̂ ¼ ∑

N

i¼1

ki
kh iN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2i ' 1

q
χðdiÞ þ di

- .
;

R down
1 cosΨ ¼ ∑

N

i¼1

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1' d2i

q
θð1' d2i Þ;

R down
1 sinΨ ¼ ∑

N

i¼1

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2i ' 1

q
χðdiÞ þ di

- .
;

ð55Þ

where, indicating by θ(x) the Heaviside function, we have defined

χðdiÞ ¼ ½'θðdi ' 1Þ þ θð'1' diÞ$: ð56Þ

Finally, if the projected frequencies ω̂ are not known we can
average the result over the marginal frequency distribution of the
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projected frequency ω̂i given by Giðω̂Þ

R̂
down
1 cos Ψ̂ ¼ ∑

N

i¼1

ki
kh iN

Z

jdij≤ 1
dω̂iGiðω̂iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1'
ω̂i

σR0ki
þ R̂

down
1 sin Ψ̂

/ 02
s

;

R̂
down
1 sin Ψ̂ ¼ ' ∑

N

j¼0

ki
kh iN

Z

di > 1
dω̂iGiðω̂iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̂i

σR0ki
þ R̂

down
1 sin Ψ̂

/ 02

' 1

s

þ ∑
N

i¼1

ki
kh iN

Z

di <'1
dω̂iGiðω̂iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̂i

σR0ki
þ R̂

down
1 sinΨ

/ 02

' 1

s

þ ∑
N

i¼1

ki
kh iN

Z 1

'1
dω̂iGiðω̂iÞ

ω̂i

σR0ki
þ R̂

down
1 sinΨ

/ 0
;

R down
1 cosΨ ¼ ∑

N

i¼1

1
N

Z

jdij≤ 1
dω̂iGiðω̂iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1'
ω̂i

σR0ki
þ R̂

down
1 sin Ψ̂

/ 02
s

;

ð57Þ

and an analogous equations for R down
1 sinðΨÞ (not shown). We

note that in the case of distributions g(ω) and Giðω̂Þ that are
symmetric around their means the above equations always admit
the solution Ψ ¼ Ψ̂ ¼ 0. Such values of the phases are also
confirmed by direct numerical integration of the NL model.

These equations together with Eq. (44) capture the steady-state
behavior of the higher-order Kuramoto model coupling topolo-
gical signals defined on nodes and links within the annealed
approximation in the coherent synchronized phase. Note that by
derivation, these equations cannot capture the asynchronous
phase which is instead always a trivial solution of the dynamical
equations corresponding to R0 ¼ R down

1 ¼ 0. Finally we observe
that for the NL Model as well as for the standard Kuramoto
model on random networks, it is expected that the annealed
approximation is more accurate for networks that are connected
and are sufficiently dense.

To illustrate the applicability of the theoretical analysis, we
consider two examples of connected networks with N= 1600
nodes: a Poisson network with average degree c= 12 and an

uncorrelated scale-free network with minimum degree m= 6 and
power-law exponent γ= 2.5 In Fig. 4 we compare the values of
R0, R down

1 obtained from direct numerical integration of Eqs. (20)
and (25) and the steady-state solutions obtained from the
numerical solution of Eq. (55). The backward transition is fully
captured by our theory, while the next paragraphs will clarify the
theoretical expectations for the forward transition.

Solution on the fully connected network. The integration of Eq.
(57) requires the knowledge of the marginal distributions Giðω̂Þ
which does not have in general a simple analytical expression.
However, in the fully connected networks with Gaussian dis-
tribution of the internal frequency of nodes and links this cal-
culation simplifies significantly. Indeed, when the link frequencies
are sampled from a Gaussian distribution with mean Ω1/N and
standard deviation 1=ðτ1

ffiffiffiffiffiffiffiffiffiffiffiffi
N ' 1

p
Þ, the marginal frequency dis-

tribution Giðω̂Þ of the internal frequency ω̂i of a node i in a fully
connected network is given by (see “Methods” for details)

Giðω̂Þ ¼
τ1ffiffiffiffiffiffiffiffiffiffi
2π=!c

p exp 'τ21!c
ðω̂i ' ω̂i

& '
Þ2

2

" #
; ð58Þ

where !c ¼ N
N'1. By considering Ω0 ¼ Ω1 ¼ ω̂i

& '
¼ 0; and per-

forming a direct integration of Eq. (57) we obtain (see “Methods”
section for details) the closed system of equations for R0 and
R down
1

1 ¼ σR down
1 h σ2R2

0ðR
down
1 Þ

2
! "

;

R down
1 ¼ σR0τ1

ffiffi
!c

p
h σ2τ21R

2
0

$ %
;

ð59Þ

where the scaling function h(x) is given by

hðxÞ ¼
ffiffiffi
π
2

r
e'x=4 I0

x
4

! "
þ I1

x
4

! "h i
; ð60Þ

with I0 and I1 indicating the modified Bessel functions. The
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Fig. 4 Comparison between the simulation results of the Nodes-Links (NL) Model and its solution in the annealed approximation. The hysteresis loop
for the synchronization order parameters R0 and Rdown1 of the NL Model are shown as a function of σ for a Poisson network with average degree c= 12 (a, c)
and for an uncorrelated scale-free network with minimum degree m= 6 and power-law exponent γ= 2.5 (b, d). Both networks have N= 1600 nodes. The
symbols indicate the simulation results for the forward (cyan diamonds) and the backward (green circles) synchronization transition. The solid black lines
indicate the analytical solution for the backward transition obtained by integrating Eq. (55).
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numerical solution of Eq. (59) reveals the following picture: for
low values of σ, only the incoherent solution R0 ¼ R down

1 ¼ 0
exists. At a positive value of σ, two solutions of Eq. (59) appear at
a bifurcation point, with the upper solution corresponding to a
stable synchronized state and the lower solution to an unstable
synchronized solution. For larger values of σ, the values of R0 and
R down
1 corresponding to the upper solution approach one (full

phase synchronization), while those for the lower solution
approach zero asymptotically, thus indicating that the incoherent
state never loses stability. Indeed, it can be easily checked (see
“Methods” for details) that for large σ the unstable solution of Eq.
(59) has asymptotic behavior

R0 ¼ σ'2J0;

R down
1 ¼ σ'1J1;

ð61Þ

with J0 and J1 constants given by

J0 ¼
π
2

h i'2
Gð0Þgð0Þ
+ ,'1

; ð62Þ

J1 ¼ gð0Þ
π
2

h i'1
: ð63Þ

Therefore, the unstable branch approaches the trivial solution
R0 ¼ R down

1 ¼ 0 only asymptotically for σ→∞. This implies that
the trivial solution remains stable for every possible value of σ
although as σ increases it describes the stationary state of an
increasingly smaller set of initial conditions.

This scenario is confirmed by numerical simulations (see
Fig. 5) showing that the backward transition is captured very well
by our theory and does not display notable finite-size effects. The
forward transition, instead, displays remarkable finite-size effects.
Indeed, as σ increases, the system remains in the incoherent state
until it explosively synchronizes at a positive value of σ and
reaches the stable synchronized branch. However the incoherent

state is stable in the limit N→∞, and this forward transition is
the result of finite-size fluctuations that push the system above the
unstable branch, causing the observed explosive transition. This is
consistent with the fact that for larger values of N, which have
smaller finite-size fluctuations, the system remains in the
incoherent state for larger values of σ.

Therefore, while a closed hysteresis loop is not present in the
NL model defined on fully connected networks, we observe
fluctuation-driven hysteresis, in which finite-size fluctuations of
the zero solution drive the system towards the synchronized
solution, creating an effective hysteresis loop.

Hysteresis on homogeneous and scale-free networks. In this
section we discuss how the scenario found for the fully connected
network can be extended to random networks with given degree
distribution. We will start from the self-consistent Eq. (57)
obtained within the annealed approximation model. These
equations display a saddle point bifurcation with the emergence
of two non-trivial solutions describing a stable and an unstable
branch of these self-consistent equations. These solutions always
exist in combination with the trivial solution R0 ¼ R down

1 ¼ 0
describing the asynchronous state. Two scenarios are possible:
either the unstable branch converges to the trivial solution only in
the limit σ→∞ or it converges to the trivial solution at a finite
value of σ. In the first case, the scenario is the same as the one
observed for the fully connected network, and the trivial solution
remains stable for any finite value of σ. In this case the forward
transition is not obtained in the limit N→∞ and the transition
observed on finite networks is only caused by finite-size effects. In
the second case the trivial solution loses its stability at a finite
value of σ. Therefore the forward transition is not subjected to
strong finite-size effects and we expect to see a forward transition
also in the N→∞ limit. in order to determine which network
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Fig. 5 The backward and the forward discontinuous phase transition on fully connected networks. The order parameters R0 (circles) and R down
1

(squares) are plotted as a function of the coupling constant σ on a fully connected network. The solid and the dashed lines indicate the stable branch and
the unstable branch predicted by Eq. (59). Simulations (shown as data point) are here obtained by integrating numerically Eqs. (34) and (35) for a fully
connected network of N= 500 (cyan circles), N= 1000 (green squares), and N= 2000 (purple diamonds) with Ω0=Ω1= 0 and (rescaled) τ0= τ1= 1.
The backward transition is perfectly captured by the theoretical prediction (solid black line) and is affected by finite-size effects very marginally. The
forward transition is instead driven by stochastic fluctuations and moves to higher values of σ as the network size increases. This is in agreement with the
fact that the unstable branch of the self-consistent solution (black dashed line) does not cross the x-axis for any finite value of the coupling constant σ.
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topologies can sustain a non-trivial hysteresis loop we expand Eq.
(57) for 0 < R0≪ 1, 0< R̂0 ) 1, and 0<R down

1 ) 1 under the
hypothesis that the distributions g(ω) and Giðω̂Þ are symmetric
and unimodal. Under these hypothesis it is easy to show that Eq.
(57) predict an unstable solution in which R0 and R down

1 scale
with σ according to

R0 ¼ σ'2J0;

R down
1 ¼ σ'1J1;

ð64Þ

with J0 and J1 constants given by

J0 ¼ kh i
π
2

k2
& '

kh i

" #'2

gðΩ0Þ
1
N
∑
i
kiGið ω̂i

& '
Þ

( )'1

;

J1 ¼ gðΩ0Þ
π
2

k2
& '

kh i

" #'1

:

ð65Þ

As long as the network does not have vanishing J0 and J1 the
unstable branch converges to the trivial solution R0 ¼ R down

1 only
in the limit σ→∞. This happens for instance for Gaussian
distribution of the internal frequency of the links and converging
second moment k2

& '
of the degree distribution. However, when

the second moment diverges, i.e., the network is scale-free with
k2
& '

! 1 as N→∞, then R0 and R1 can converge to the trivial
solution R0 ¼ R down

1 ¼ 0 also for finite σ. This analysis suggests
that the scenario described for the fully connected network
remains valid for sparse (connected) networks as long as the
degree distribution does not have a diverging second moment,
while a stable hysteresis loop can be observed for scale-free
networks.

Conclusions
Until recently the synchronization phenomenon has been
explored only in the context of topological signals associated to
the nodes of a network. However, the growing interest in
simplicial complexes opens the perspective of investigating
synchronization of higher-order topological signals, for
instance associated to the links of the discrete networked
structure. Here we uncover how topological signals associated
to nodes and links can be coupled to one another giving rise to
an explosive synchronization phenomenon involving both sig-
nals at the same time. The model has been tested on real
connectomes and on major examples of simplicial complexes
(the configuration model51 of simplicial complex and the
NGF13). Moreover, we provide an analytical solution of this
model that provides a theoretical understanding of the
mechanism driving the emergence of this discontinuous phase
transition and the mechanism responsible for the emergence of
a closed hysteresis loop. This work can be extended in different
directions including the study of the de-synchronization
dynamics of this coupled higher-order synchronization and
the duality of this model with the same model defined on the
line graph of the same network.

Methods
Definition of simplicial complexes. Simplicial complexes represent higher-order
networks whose interactions include two or more nodes. These many-body
interactions are captured by simplices. An n-dimensional simplex α is a set of n+ 1
nodes

α ¼ ½i0; i1; ¼ ; in$: ð66Þ

For instance a node is a 0-dimensional simplex, a link is a one-dimensional
simplex, a triangle is a two-dimensional simplex, a tetrahedron is a three-
dimensional simplex, and so on. A face of a simplex is the simplex formed by a
proper subset of the nodes of the original simplex. For instance, the faces of a
tetrahedron are 4 nodes, 6 links, and 4 triangles. A simplicial complex is a set of

simplices closed under the inclusion of the faces of each simplex. Any simplicial
complex can be reduced to its simplicial complex skeleton, which is the network
formed by the simplicial complex nodes and links. Simplices have a relevant
topological and geometrical interpretation and constitute the topological structures
studied by discrete algebraic topology. Therefore representing the many-body
interactions of a complex system with a simplicial complex opens the very fertile
opportunity to use the tools of algebraic topology5,59 to study the topology of the
system under investigation. In this work we show that algebraic topology can also
shed significant light on the role that topology has on higher-order
synchronization.

Oriented simplices and boundary map. In algebraic topology simplices
are oriented. For instance a link α= [i, j] has the opposite sign of the link
[j, i], i.e.,

½i; j$ ¼ '½j; i$: ð67Þ

Similarly to higher-order simplices we associate an orientation such that

½i0; i1; ¼ ; in$ ¼ ð'1ÞσðπÞ½iπð0Þ; iπð1Þ; ¼ ; iπðnÞ$; ð68Þ

where σ(π) indicates the parity of the permutation π. It is good practice to use as
orientation of the simplices the orientation induced by the labeling of the nodes,
i.e., giving, for example, a positive orientation to any simplex

½i0; i1; ¼ ; in$; ð69Þ

where

i0 < i1 < i2 ¼ < in: ð70Þ

This will ensure that the spectral properties of the higher-order Laplacians that
will be defined later are independent of the labeling of the nodes. Given a simplicial
complex, a n-chain consists of the elements of a free abelian group Cn with basis
formed by the set of all oriented n-simplices. Therefore every element of Cn can be
uniquely expressed as a linear combination of the basis elements (n-simplices) with
coefficients in Z. The boundary operator ∂n is a linear operator ∂n : Cn ! Cn'1
whose action is determined by the action on each n-simplex of the simplicial
complex given by

∂n½i0; i1 ¼ ; in$ ¼ ∑
n

p¼0
ð'1Þp½i0; i1; ¼ ; ip'1; ipþ1; ¼ ; in$: ð71Þ

As a concrete example, in Fig. 6 we demonstrate the action of the boundary
operator on links and triangles. A celebrated property of the boundary operator is
that the boundary of a boundary is null, i.e.

∂n∂nþ1 ¼ 0 ð72Þ

for any n > 0. This relation can be directly proven by using Eq. (71). Let us
consider a simplicial complex K. Let us indicate with N[n] the number of simplices
of the simplicial complex with generic dimension n. Given a basis for the linear
space of n-chains Cn and for the linear space of (n− 1)-chains Cn'1 formed by an
ordered list of the n simplices and (n− 1) simplices of the simplicial complex, the
boundary operator ∂n can be represented as N[n−1] ×N[n] incidence matrix B[n]. In
Fig. 6 we show a two-dimensional simplicial complex and its corresponding
incidence matrices B[1] and B[2]. Given that the boundary matrices obey Eq. (72) it

Fig. 6 The boundary operators and their representation in terms of the
incidence matrices. Panels (a) and (b) describe the action of the boundary
operator on an oriented link and on an oriented triangle respectively. Panel
(c) shows a toy example of a simplicial complex and panel (d) indicates its
incidence matrices B[1] and B[2] representing the boundary operators ∂1 and
∂2, respectively.
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follows that the incidence matrices obey

B½n$B½nþ1$ ¼ 0;B>
½nþ1$B

>
½n$ ¼ 0; ð73Þ

for any n > 0.

Higher-order Laplacians. Using the incidence matrices it is natural to generalize
the definition of the graph Laplacian

L½0$ ¼ B½1$B
>
½1$ ð74Þ

to the higher-order Laplacian L[n] (also called combinatorial Laplacians)17,19,60 that
can be represented as a N[n] ×N[n] matrix given by

L½n$ ¼ L down
½n$ þ L up

½n$ ð75Þ

with

L down
½n$ ¼ B>

½n$B½n$;

L up
½n$ ¼ B½nþ1$B

>
½nþ1$;

ð76Þ

for n > 0. The higher-order Laplacian can be proven to be independent of the
orientation of the simplices as long as the simplicial complex has an orientation
induced by a labeling of the nodes.

The most celebrated property of higher-order Laplacian is that the degeneracy
of the zero eigenvalue of the n Laplacian L[n] is equal to the Betti number βn and
that their corresponding eigenvectors localize around the corresponding n-
dimensional cavities of the simplicial complex. The higher-order Laplacians can be
used to define higher-order diffusion17 and can display a higher-order spectral
dimension on network geometries. Here we are particularly interested in the use of
incidence matrices and higher-order Laplacians to define higher-order topological
synchronization.

Steady-state solution of the annealed equations for the NL Model. Here we
study Eqs. (44) and (57) assuming that the distributions g(ω) and Giðω̂Þ are
unimodal functions symmetric about their means. Setting Ψ ¼ Ψ̂ ¼ 0 and con-
sidering the change of variables z ¼ ω=ðσR0R

down
1 Þ, y ¼ ω̂=ðσR0Þ, Eq. (44) can be

written as

1 ¼ σR down
1 ∑

N

i¼1

k2i
kh iN

Z 1

'1
gðΩ0 þ zσkiR̂0R

down
1 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1' z2

p
dz;

R0 ¼ σR̂0R
down
1 ∑

N

i¼1

ki
N

Z 1

'1
gðΩ0 þ zσkiR̂0R

down
1 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1' z2

p
dz;

while Eq. (57) reduce to

R down
1 ¼ σR0 ∑

N

i¼1

ki
N

Z 1

'1
Gið ω̂i

& '
þ yσR0kiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1' y2

p
dy;

R̂
down
1 ¼ σR0 ∑

N

i¼1

k2i
kh iN

Z 1

'1
Gið ωh ii þ yσR0kiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1' y2

p
dy:

We notice that the equations for R0; R̂0 and R down
1 do not depend on the

order parameter R̂
down
1 so we can obtain a fully analytical solution of the model

without solving the last equation. The above equations depend on the
distribution g(ω) and the set of marginal distributions Giðω̂iÞ. However we can
show that, provided k2

& '
= kh i is finite, the solution of these equations does not

converge to the trivial solution R0 ¼ R̂0 ¼ R down
1 ¼ 0 for any finite value of σ.

Indeed we are now going to show that the unstable branch of the solution these
equations converges to the trivial solution only in the limit σ→∞. Assuming 0 <
R0≪ 1, 0< R̂0 ) 1, and 0<R down

1 ) 1 we can expand the functions
gðzσkiR̂0R

down
1 Þ and Gi(yσR0ki) as

gðΩ0 þ zσkiR̂0R
down
1 Þ ’ gðΩ0Þ þ

g 00ðΩ0Þ
2

ðzσkiR̂0R
down
1 Þ

2

Gið ω̂i

& '
þ yσR0kiÞ ’ Gið ω̂i

& '
Þ þ

G
00

i ð ω̂i

& '
Þ

2
ðyσR0kiÞ

2

Stopping at the first order of this expansion we get

1 ¼ σR down
1 gðΩ0Þ

π
2

k2
& '

kh i
; ð77Þ

R0 ¼ σR̂0R
down
1 gðΩ0Þ

π
2

kh i; ð78Þ

R down
1 ¼ σR̂0

π
2
1
N
∑
i
kiGið ω̂i

& '
Þ: ð79Þ

This equations lead to the following scaling of R0 and R down
1 with σ

R0 ¼ σ'2J0;

R down
1 ¼ σ'1J1;

ð80Þ

with

J0 ¼ kh i
π
2

k2
& '

kh i

" #'2

gðΩ0Þ
1
N
∑
i
kiGið ω̂i

& '
Þ

( )'1

;

J1 ¼ gðΩ0Þ
π
2

k2
& '

kh i

" #'1

:

ð81Þ

This confirms the theoretical framework revealing that in this dynamics there is
always a trivial solution R0 ¼ R̂0 ¼ R down

1 ¼ 0 while Eqs. (44) and (57) are
characterized by a saddle-point instability so that for σ > σc two additional
solutions emerge, a stable solution and an unstable solution. The stable solution
describes the synchronized phase and captures the backward transition. As
long as the second moment of the degree distribution does not diverge, the
unstable solution converges to the trivial solution R0 ¼ R̂0 ¼ R down

1 ¼ 0 only
for σ→∞.

The asymptotic scaling for R0 and R down
1 given by Eq. (80) can be adapted to

capture the asymptotic scaling of the fully connected case with a suitable rescaling
of the model parameters of the model, obtaining Eqs. (61) and (63).

Marginal distributions in the fully connected case. The distribution G1ðω̂Þ of ω̂
is a Gaussian distribution with averages given by Eq. (27) and covariance matrix C
given by Eq. (28). The covariance matrix has N− 1 eigenvalues given by λ ¼ 1=τ21
and one zero eigenvalue λ= 0 corresponding to the eigenvector

1=
ffiffiffiffi
N

p
¼ ð1; 1; ¼ ; 1Þ>=

ffiffiffiffi
N

p
: ð82Þ

This means that we should always have

∑
N

n¼1

½ω̂n ' ω̂n

& '
$

ffiffiffiffi
N

p ¼ 0; ð83Þ

a constraint that we can introduce as a delta function in the expression for the joint
distribution Ĝðω̂Þ of the vector ω̂. Here we note that under these hypotheses and
assuming that the distribution of the frequencies of the links is a Gaussian with
average Ω1/N and standard deviation 1=ðτ1

ffiffiffiffiffiffiffiffiffiffiffiffi
N ' 1

p
Þ the marginal probability Giðω̂Þ

of ω̂i can be expressed as Eq. (58).
Given that the covariance matrix has a zero eigenvalue we can express the joint

Gaussian distribution Ĝðω̂Þ as

Ĝðω̂Þ ¼ Ce'F ðω̂Þδ ∑
N

n¼1

½ω̂n ' ω̂n

& '
$

ffiffiffiffi
N

p
/ 0

; ð84Þ

where δ(x) indicates the delta function and where F ðω̂Þ and C are given by

F ðω̂Þ ¼
τ21
2

∑
N

n¼1
ω̂n ' ω̂n

& '$ %2
;

C ¼
τ1ffiffiffiffiffi
2π

p
/ 0N'1

:

ð85Þ

The marginal probability Giðω̂Þ is given by

Giðω̂Þ ¼
Z Y

n≠i

dω̂nĜðω̂Þ: ð86Þ

By expressing the delta function in Eq. (84) in its integral form

δðx; yÞ ¼
1
2π

Z 1

'1
dzeizðx'yÞ ð87Þ

we get the final expression for the marginal distribution Eq. (58), in fact, by putting
c\;=\;N/(N–1), we have

GðiÞ
1 ðω̂Þ ¼

C
2π

Z
dz
Z Y

n≠i

dω̂ne
'F ðω̂Þ exp iz ∑N

n¼1
½ω̂n ' ω̂n

& '
$

ffiffiffiffi
N

p
/ 0( )

¼
e'τ21

½ω̂i' ω̂ih i$
2

2π

Z
dz exp '

z2

2τ21!c
þ iz

½ω̂i ' ω̂i

& '
$

ffiffiffiffi
N

p
( )

¼
τ1ffiffiffiffiffiffiffiffiffiffi
2π=!c

p exp 'τ21!c
ðω̂i ' ω̂i

& '
Þ2

2

" #
:

ð88Þ
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