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This is research on
DEATH

I How to make life more pleasant?
I consumption: feels good at the moment.
I investment: enlarges wealth to sustain future consumption.
I healthcare: defers death.
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MORTALITY V.S. AGE
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I Exponential increase in age [Gompertz’ law]:

dMt = βMtdt (β ≈ 7.1%)
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LITERATURE
I How Exogenous Mortality affects Consumption?

I Yarri (1965), Richard (1975), Davidoff et al (2005)
I Healthcare?

I Health as Capital, Healthcare as Investment
I Grossman (1972), Ehrlich and Chuma (1990)
I Health Capital observable?

I Mortality rates decline with health capital.
I Ehrlich (2000), Ehrlich and Yin (2005), Yogo (2009),

Hugonnier et al. (2012)
I Gompertz’ law?

include
healthcare

Gompertz’
law
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PROBLEM FORMULATION
I Individual maximizes utility from lifetime consumption:

sup
c,π,h

E
[∫ τ

0
e−δtU(ctXt)dt + U(ζXτ )

]
.

I Money can buy...
I consumption, which generates utility...
I healthcare, which reduces mortality growth...

=⇒ buying time for more consumption.
I investment, which potentially enlarges wealth X...

I ζ ∈ (0, 1) : Inheritance and estate taxes.

QUESTIONS
I Find optimal controls {ĉt}t≥0, {π̂t}t≥0, {ĥt}t≥0.
I {ĥt}t≥0 =⇒ endogenous mortality curve

=⇒ follows Gompertz’ law?
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UTILITY FUNCTION

Isoelastic utility:

U(x) =
x1−γ

1− γ
0 < γ 6= 1.

I γ: risk aversion
I 1/γ: elasticity of inter-temporal substitution (EIS).

I EIS large =⇒
substitute future consumption for current consumption.

I EIS small =⇒
substitute current consumption for future consumption.
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MORTALITY DYNAMICS

I Without healthcare, mortality grows exponentially
[Gompertz’ law]:

dMt = βMtdt.

I Healthcare slows down mortality growth

dMt = (β − g(ht))Mtdt

I ht: healthcare-wealth ratio
I g : R+ → R+ measures efficacy of healthcare

– g(0) = 0, g is increasing and concave.
– Assume g ∈ C2, g′(0) =∞, and g′(∞) = 0 (Inada’s

condition).
– Example:

g(h) =
a
q

hq a > 0, q ∈ (0, 1)
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WEALTH DYNAMICS

I Consider a Black-Scholes market with
I a riskfree rate r > 0;
I a risky asset

dSt = (µ+ r)Stdt + σStdBt,

for some µ ∈ R and σ > 0.

I The wealth process evolves as

dXt = (r− ct − ht + µπt)Xtdt + σπtXtdBt. (1)
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PREVIOUS RESULTS

I Guasoni & Huang (2019) analyze the value function

V(x,m) := sup
c,π,h

E
[∫ τ

0
e−δtU(ctXt)dt + U(ζXτ )

]

I V(x,m) is solved semi-explicitly.
I {ĉt}, {π̂t}, {ĥt} are characterized as functions of V(x,m).

I Calibration Issue:

Should γ > 0 be calibrated to risk aversion or EIS?

Bansal & Yaron (2004): risk aversion and EIS are both
larger than 1.
I Risk aversion (γ) > 1 =⇒ γ > 1.
I EIS (1/γ) > 1 =⇒ γ < 1.
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THIS PAPER

Given (ct, ht)t≥0, define Epstein-Zin utility process on the
random horizon τ as the semimartingale (Ṽc,h

t )t≥0 satisfying

Ṽc,h
t = E

[∫ T∧τ

t∧τ
f (cs, Ṽc,h

s )ds + ζ1−γṼc,h
τ−1{τ≤T} + Ṽc,h

T 1{τ>T}
∣∣Gt

]
, ∀t ≤ T <∞.

(2)

I Epstein-Zin aggregator:

f (c, v) := δ
c1− 1

ψ

1− 1
ψ

(
(1− γ)v

)1− 1
θ − δθv, with θ :=

1− γ
1− 1

ψ

.

I EIS: ψ, risk aversion: γ.
(Duffie & Epstein (1992a), Duffie & Epstein (1992b))

I Assume ψ > 1 and γ > 1.



INTRODUCTION MODEL & RESULTS CALIBRATION

BSDE Characterization

Given (c, h)t≥0, a semimartingale Ṽ solves (2) if and only if

Ṽt = Vt1{t<τ} + ζ1−γVτ−1{t≥τ} ∀t ≥ 0, (3)

where V is a semimartingale solving the infinite-horizon BSDE

dVt = −F(ct,Mh
t ,Vt)ds + dMt, ∀ 0 ≤ t ≤ T <∞, (4)

with F : Ω× R+ × R+ × R→ R defined by

F(c,m, v) := f (c, v)− (1− ζ1−γ)mv. (5)

I For BSDE (4), uniqueness of solutions is challenging.
=⇒ need to focus on a special class of (ct, ht)t≥0.
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Definition
Fix k ∈ R. We say (ct, ht)t≥0 is k-admissible if there exists a
solution V to BSDE (4) satisfying
I Integrability: E

[
sups∈[0,t] |Vs|

]
<∞ ∀t > 0;

I Transversality:

lim
t→∞

e−(δθ+(1−θ)k)tE
[

e−γ(ψ−1) 1−ζ1−γ
1−γ

∫ t
0 Mh

s ds|Vt|
]

= 0; (6)

I Boundedness from above by a tractable process:

Vs ≤ δθ
(

k + (ψ − 1)
1− ζ1−γ

1− γ
Mh

s

)−θ c1−γ
s

1− γ
, ∀s ≥ 0.

I Find k that is “just right”:
I Small k =⇒ Strong transversality, boundedness conditions
I Large k =⇒ Weak transversality, boundedness conditions
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Theorem
Fix k ∈ R. For any k-admissible (c, h), there exists a unique solution
Vc,h to BSDE (4). Hence, the Epstein-Zin utility process Ṽc,h in (2)
can be uniquely determined via

Ṽc,h
t = Vc,h

t 1{t<τ} + ζ1−γVc,h
τ−1{t≥τ} ∀t ≥ 0.
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THE CONTROL PROBLEM

An agent maximizes her Epstein-Zin utility Ṽc,h
0 by choosing

(c, π, h) in a suitable collection of strategies P , i.e.

sup
(c,π,h)∈P

Ṽc,h
0 = sup

(c,π,h)∈P
Vc,h

0 .

The set P contains (c, π, h) satisfying
I (c, h) is k-admissible for some k ∈ R,
I π is s.t. wealth process Xc,π,h in (1) well-defined.
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PDE CHARACTERIZATION

I Under the current Markovian framework, we take

v(x,m) := sup
(c,π,h)∈P

Ṽc,h
0 . (7)

I Take k ∈ R (encoded implicitly in P) to be

k∗ := δψ + (1− ψ)

(
r +

1
2γ

(µ
σ

)2
)
,

which is the optimal consumption rate of an immortal
agent (m = 0).
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Theorem
Assume g

(
(g′)−1 (ψ − 1)

)
< β and δψ + (1− ψ)

(
r + 1

2γ

(
µ
σ

)2 )
> 0. Then,

v(x,m) = δθ
x1−γ

1− γ u∗(m)
− θ
ψ , (x,m) ∈ R2

+,

where u∗ : R+ → R+ is the unique nonnegative, strictly increasing, strictly
concave, classical solution to

0 = u(m)2 − c̃0(m)u(m)− βmu′(m)

+mu′(m) sup
h∈R+

{
g(h)− (ψ − 1)

u(m)

mu′(m)
h
}
,

where c̃0(m) := ψδ + (1− ψ)
(

(ζ1−γ−1)m
1−γ + r + 1

2γ

(
µ
σ

)2
)

. Furthermore,

ĉt := u∗(Mt), π̂t :=
µ

γσ2 , ĥt := (g′)−1
(

(ψ − 1)
u∗(Mt)

Mt(u∗)′(Mt)

)
, t ≥ 0

is an optimal control for sup(c,π,h)∈P Vc,h
0 .
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REMARKS

I Conditions of Theorem:
1. g

(
(g′)−1 (ψ − 1)

)
< β =⇒ g(ĥt) < β ∀t ≥ 0.

– Even optimal healthcare spending can only slow (but not
reverse) aging.

2. δψ + (1− ψ)
(
r + 1

2γ

(
µ
σ

)2 )
> 0 =⇒ ĉt > 0 for all t ≥ 0.

I Proof Sketch:
1. Construction of u∗

I No healthcare (g ≡ 0) =⇒ supersolution u
I Forever young (β = 0) =⇒ subsolution ũ
I By Perron’s method of viscosity solutions, construct

ũ ≤ u∗ ≤ ū.

2. Upgrade regularity
“Concavity” + viscosity solution =⇒ smoothness.
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REMARKS

I Proof Sketch (conti.):
3. Verification:

I Classical arguments do not work....
I Relate the candidate solution

w(x,m) := δθ
x1−γ

1− γ u∗(m)
− θ
ψ

to a BSDE.
I Compare this BSDE for w with BSDE (4).
I By a (new) comparison principle for infinite-horizon BSDEs,

w(x,m) = v(x,m).
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CALIBRATION

I Parameters taken as given from empirical studies:

r = 1%, δ = 3%, ψ = 1.5, γ = 2, ζ = 50%, µ = 5.2%, σ = 15.4%.

I The efficacy function g : R+ → R+ is taken as

g(z) = a
zq

q
, with a > 0 and q ∈ (0, 1)

I Calibrate β > 0, a > 0, q ∈ (0, 1) to actual mortality data.
I β: Estimated from mortality data for 1900 cohort (assuming

no healthcare available).
I a, q: Calibrated by minimizing mean square error between

endogenous mortality curve and mortality data of 1940
cohort.
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THE US
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Figure: Mortality rates (vertical axis, in logarithmic scale) at adults’
ages for the cohorts born in 1900 and 1940 in the US. The dots are
actual mortality data (Source: Berkeley Human Mortality Database),
and the lines are model-implied mortality curves.
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OTHER COUNTRIES

1900 cohort without healthcare

1940 cohort with healthcare
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(a) UK
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(b) Netherlands
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(c) Bulgaria
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CALIBRATED EFFICACY

Figure: Calibrated efficacy of healthcare g(h), measured by the
reduction in the growth of mortality, given proportions of wealth h
spent on healthcare in different countries.

I In line with WHO’s ranking of healthcare systems.
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HEALTHCARE SPENDING

Figure: Optimal healthcare spending in the US, UK, Netherlands (NL), and
Bulgaria (BG). Left panel: Healthcare-wealth ratio (vertical, log-scale) at adult
ages (horizontal). Right panel: Healthcare as a fraction of total spending in
consumption, investment, and healthcare (vertical) at adult ages (horizontal).
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THANK YOU!!
Q & A

Preprint available @ https://arxiv.org/abs/2003.01783
“Mortality and Healthcare: a Stochastic Control Analysis under

Epstein-Zin Preferences”
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