CALIBRATION 000000

Mortality and Healthcare An Analysis Under Epstein-Zin Preferences

Yu-Jui Huang University of Colorado, Boulder

Joint work with Joshua Aurand (Dublin City University)

Stochastics & Finance Seminar University of Sydney May 27, 2021

This is research on **DEATH**

- ► How to make life more pleasant?
 - **consumption**: feels good at the moment.
 - **investment**: enlarges wealth to sustain future consumption.
 - healthcare: defers death.

MORTALITY V.S. AGE

Exponential increase in age [Gompertz' law]:

 $dM_t = \beta M_t dt$ ($\beta \approx 7.1\%$)

LITERATURE

- ► How <u>Exogenous Mortality</u> affects <u>Consumption</u>?
 - Yarri (1965), Richard (1975), Davidoff et al (2005)
 - Healthcare?
- <u>Health</u> as <u>Capital</u>, <u>Healthcare</u> as <u>Investment</u>
 - Grossman (1972), Ehrlich and Chuma (1990)
 - Health Capital observable?
- Mortality rates decline with health capital.
 - Ehrlich (2000), Ehrlich and Yin (2005), Yogo (2009), Hugonnier et al. (2012)
 - ► Gompertz' law?

PROBLEM FORMULATION

► Individual maximizes utility from lifetime consumption:

$$\sup_{c,\pi,h} \mathbb{E}\left[\int_0^\tau e^{-\delta t} U(c_t X_t) dt + U(\zeta X_\tau)\right].$$

► <u>Money</u> can buy...

- <u>consumption</u>, which generates utility...
- healthcare, which reduces mortality growth...
 - \implies buying time for more consumption.
- investment, which potentially enlarges wealth X...
- $\zeta \in (0, 1)$: Inheritance and estate taxes.

QUESTIONS

- Find optimal controls $\{\hat{c}_t\}_{t\geq 0}, \{\hat{\pi}_t\}_{t\geq 0}, \{\hat{h}_t\}_{t\geq 0}$.
- $\{\hat{h}_t\}_{t\geq 0} \implies endogenous \text{ mortality curve}$ $\implies \text{ follows Gompertz' law?}$

UTILITY FUNCTION

Isoelastic utility:

$$U(x) = \frac{x^{1-\gamma}}{1-\gamma} \qquad 0 < \gamma \neq 1.$$

- γ : risk aversion
- $1/\gamma$: elasticity of inter-temporal substitution (EIS).
 - ► EIS large ⇒ substitute *future* consumption for *current* consumption.
 - ► EIS small ⇒ substitute *current* consumption for *future* consumption.

MORTALITY DYNAMICS

 Without healthcare, mortality grows exponentially [Gompertz' law]:

 $dM_t = \beta M_t dt.$

Healthcare slows down mortality growth

$$dM_t = (\beta - g(h_t))M_t dt$$

• h_t : healthcare-wealth ratio

- $g : \mathbb{R}_+ \to \mathbb{R}_+$ measures *efficacy* of healthcare
 - g(0) = 0, g is increasing and concave.
 - − Assume $g \in C^2$, $g'(0) = \infty$, and $g'(\infty) = 0$ (Inada's condition).

– Example:

$$g(h) = \frac{a}{q}h^q \qquad a > 0, q \in (0,1)$$

WEALTH DYNAMICS

Consider a Black-Scholes market with

- ▶ a riskfree rate r > 0;
- a risky asset

$$dS_t = (\mu + r)S_t dt + \sigma S_t dB_t,$$

for some $\mu \in \mathbb{R}$ and $\sigma > 0$.

► The wealth process evolves as

$$dX_t = (r - c_t - h_t + \mu \pi_t) X_t dt + \sigma \pi_t X_t dB_t.$$
(1)

PREVIOUS RESULTS

► Guasoni & Huang (2019) analyze the value function

$$V(x,m) := \sup_{c,\pi,h} \mathbb{E}\left[\int_0^\tau e^{-\delta t} U(c_t X_t) dt + U(\zeta X_\tau)\right]$$

Calibration Issue:

Should $\gamma > 0$ be calibrated to risk aversion or EIS?

Bansal & Yaron (2004): risk aversion and EIS are both larger than 1.

- Risk aversion $(\gamma) > 1 \implies \gamma > 1$.
- EIS $(1/\gamma) > 1 \implies \gamma < 1.$

THIS PAPER

Given $(c_t, h_t)_{t \ge 0}$, define Epstein-Zin utility process on the random horizon τ as the semimartingale $(\widetilde{V}_t^{c,h})_{t \ge 0}$ satisfying

$$\widetilde{V}_{t}^{c,h} = \mathbb{E}\left[\int_{t\wedge\tau}^{T\wedge\tau} f(c_{s},\widetilde{V}_{s}^{c,h})ds + \zeta^{1-\gamma}\widetilde{V}_{\tau-}^{c,h}\mathbb{1}_{\{\tau\leq T\}} + \widetilde{V}_{T}^{c,h}\mathbb{1}_{\{\tau>T\}}\big|\mathcal{G}_{t}\right], \,\forall t\leq T<\infty.$$
(2)

Epstein-Zin aggregator:

$$f(c,v) := \delta \frac{c^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} \left((1-\gamma)v \right)^{1-\frac{1}{\theta}} - \delta\theta v, \quad \text{with } \theta := \frac{1-\gamma}{1-\frac{1}{\psi}}$$

► EIS: ψ, risk aversion: γ.
 (Duffie & Epstein (1992a), Duffie & Epstein (1992b))
 ► Assume ψ > 1 and γ > 1.

NTRO	DODUCTION MODEL & RESULTS 00000 00000000	CALIBRATIO	ON
	BSDE Characterization		
	Given $(c,h)_{t\geq 0}$, a semimartingale \widetilde{V} solves (2) <i>if and only if</i>		
	$\widetilde{V}_t = \frac{V_t}{\mathbb{1}}_{\{t < \tau\}} + \zeta^{1-\gamma} V_{\tau-} \mathbb{1}_{\{t \ge \tau\}} \qquad \forall t \ge 0,$	(3)	
	where V is a semimartingale solving the infinite-horizon BS	SDE	
	$dV_t = -F(c_t, M_t^h, V_t)ds + d\mathcal{M}_t, \forall \ 0 \le t \le T < \infty,$	(4)	

with $F: \Omega \times \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ defined by

$$F(c,m,v) := f(c,v) - (1 - \zeta^{1-\gamma})mv.$$
(5)

► For BSDE (4), *uniqueness* of solutions is challenging. \implies need to focus on a special class of $(c_t, h_t)_{t \ge 0}$.

Definition

Fix $k \in \mathbb{R}$. We say $(c_t, h_t)_{t \ge 0}$ is *k*-admissible if there exists a solution *V* to BSDE (4) satisfying

- Integrability: $\mathbb{E}\left[\sup_{s\in[0,t]}|V_s|\right] < \infty \quad \forall t > 0;$
- ► Transversality:

$$\lim_{t \to \infty} e^{-(\delta\theta + (1-\theta)k)t} \mathbb{E}\left[e^{-\gamma(\psi-1)\frac{1-\zeta^{1-\gamma}}{1-\gamma} \int_0^t M_s^h ds} |V_t| \right] = 0; \quad (6)$$

Boundedness from above by a tractable process:

$$V_s \leq \delta^{\theta} \left(\mathbf{k} + (\psi - 1) \frac{1 - \zeta^{1 - \gamma}}{1 - \gamma} M_s^h \right)^{-\theta} \frac{c_s^{1 - \gamma}}{1 - \gamma}, \quad \forall s \geq 0.$$

► Find *k* that is "just right":

- Small $k \implies$ Strong transversality, boundedness conditions
- Large $k \implies$ Weak transversality, boundedness conditions

Theorem

Fix $k \in \mathbb{R}$. For any *k*-admissible (c, h), there exists a unique solution $V^{c,h}$ to BSDE (4). Hence, the Epstein-Zin utility process $\widetilde{V}^{c,h}$ in (2) can be uniquely determined via

 $\widetilde{V}_t^{c,h} = V_t^{c,h} \mathbbm{1}_{\{t < \tau\}} + \zeta^{1-\gamma} V_{\tau-}^{c,h} \mathbbm{1}_{\{t \geq \tau\}} \qquad \forall t \geq 0.$

THE CONTROL PROBLEM

An agent maximizes her Epstein-Zin utility $\widetilde{V}_0^{c,h}$ by choosing (c, π, h) in a suitable collection of strategies \mathcal{P} , i.e.

$$\sup_{(c,\pi,h)\in\mathcal{P}}\widetilde{V}_0^{c,h}=\sup_{(c,\pi,h)\in\mathcal{P}}V_0^{c,h}$$

The set \mathcal{P} contains (c, π, h) satisfying

- (c,h) is *k*-admissible for some $k \in \mathbb{R}$,
- π is s.t. wealth process $X^{c,\pi,h}$ in (1) well-defined.

PDE CHARACTERIZATION

• Under the current Markovian framework, we take

$$v(x,m) := \sup_{(c,\pi,h)\in\mathcal{P}} \widetilde{V}_0^{c,h}.$$
(7)

• Take $k \in \mathbb{R}$ (encoded implicitly in \mathcal{P}) to be

$$k^* := \delta \psi + (1 - \psi) \left(r + \frac{1}{2\gamma} \left(\frac{\mu}{\sigma} \right)^2 \right),$$

which is the optimal consumption rate of an immortal agent (m = 0).

Theorem

Assume $g\left((g')^{-1}(\psi-1)\right) < \beta$ and $\delta\psi + (1-\psi)\left(r + \frac{1}{2\gamma}\left(\frac{\mu}{\sigma}\right)^2\right) > 0$. Then,

$$v(x,m) = \delta^{\theta} \frac{x^{1-\gamma}}{1-\gamma} u^*(m)^{-\frac{\theta}{\psi}}, \quad (x,m) \in \mathbb{R}^2_+,$$

where $u^* : \mathbb{R}_+ \to \mathbb{R}_+$ is the unique nonnegative, strictly increasing, strictly concave, classical solution to

$$0 = u(m)^{2} - \tilde{c}_{0}(m)u(m) - \beta mu'(m) + mu'(m) \sup_{h \in \mathbb{R}_{+}} \left\{ g(h) - (\psi - 1) \frac{u(m)}{mu'(m)} h \right\},$$

where $\tilde{c}_0(m) := \psi \delta + (1 - \psi) \left(\frac{(\zeta^{1-\gamma} - 1)m}{1-\gamma} + r + \frac{1}{2\gamma} \left(\frac{\mu}{\sigma} \right)^2 \right)$. Furthermore,

$$\hat{c}_t := u^*(M_t), \quad \hat{\pi}_t := \frac{\mu}{\gamma \sigma^2}, \quad \hat{h}_t := (g')^{-1} \left((\psi - 1) \frac{u^*(M_t)}{M_t(u^*)'(M_t)} \right), \quad t \ge 0$$

is an optimal control for $\sup_{(c,\pi,h)\in\mathcal{P}} V_0^{c,h}$.

Remarks

Conditions of Theorem:

- $1. \ \underline{g\left((g')^{-1}\left(\psi-1\right)\right) < \beta} \implies g(\hat{h}_t) < \beta \ \forall t \ge 0.$
 - Even optimal healthcare spending can only slow (but not reverse) aging.
- 2. $\underline{\delta\psi + (1-\psi)\left(r + \frac{1}{2\gamma}\left(\frac{\mu}{\sigma}\right)^2\right) > 0} \implies \hat{c}_t > 0 \text{ for all } t \ge 0.$

Proof Sketch:

- 1. Construction of u^*
 - No healthcare ($g \equiv 0$) \implies supersolution \overline{u}
 - Forever young $(\beta = 0) \implies$ subsolution \tilde{u}
 - ► By *Perron's method* of viscosity solutions, construct

$$\tilde{u} \leq u^* \leq \bar{u}.$$

2. Upgrade regularity

"Concavity" + viscosity solution \implies smoothness.

REMARKS

Proof Sketch (conti.):

- 3. Verification:
 - Classical arguments do not work....
 - Relate the candidate solution

$$w(x,m) := \delta^{\theta} \frac{x^{1-\gamma}}{1-\gamma} u^*(m)^{-\frac{\theta}{\psi}}$$

to a BSDE.

- Compare this BSDE for w with BSDE (4).
- ► By a (new) comparison principle for infinite-horizon BSDEs, w(x,m) = v(x,m).

CALIBRATION

Parameters taken as given from empirical studies:

$$r = 1\%, \delta = 3\%, \psi = 1.5, \gamma = 2, \zeta = 50\%, \mu = 5.2\%, \sigma = 15.4\%.$$

• The efficacy function $g : \mathbb{R}_+ \to \mathbb{R}_+$ is taken as

$$g(z) = a \frac{z^q}{q}$$
, with $a > 0$ and $q \in (0, 1)$

• Calibrate $\beta > 0$, a > 0, $q \in (0, 1)$ to actual mortality data.

- β: Estimated from mortality data for 1900 cohort (assuming no healthcare available).
- *a*, *q*: Calibrated by minimizing mean square error between endogenous mortality curve and mortality data of 1940 cohort.

Figure: Mortality rates (vertical axis, in logarithmic scale) at adults' ages for the cohorts born in 1900 and 1940 in the US. The dots are actual mortality data (Source: Berkeley Human Mortality Database), and the lines are model-implied mortality curves.

Model & Results

OTHER COUNTRIES

CALIBRATED EFFICACY

Figure: Calibrated efficacy of healthcare g(h), measured by the reduction in the growth of mortality, given proportions of wealth h spent on healthcare in different countries.

► In line with WHO's ranking of healthcare systems.

HEALTHCARE SPENDING

Figure: Optimal healthcare spending in the US, UK, Netherlands (NL), and Bulgaria (BG). Left panel: Healthcare-wealth ratio (vertical, log-scale) at adult ages (horizontal). Right panel: Healthcare as a fraction of total spending in consumption, investment, and healthcare (vertical) at adult ages (horizontal).

THANK YOU!!

Q & A

Preprint available @ https://arxiv.org/abs/2003.01783 "Mortality and Healthcare: a Stochastic Control Analysis under Epstein-Zin Preferences"