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The following two theorems are quoted from the Hunter and Nachtergaele text:

100 Banach Spaces

Then ∥x̃∥ ≤ δ, so ∥T x̃∥ ≤ 1. It follows from the linearity of T that

∥Tx∥ =
∥x∥
δ

∥T x̃∥ ≤ M∥x∥,

where M = 1/δ. Thus T is bounded. !

The proof shows that if a linear map is continuous at zero, then it is continuous

at every point. A nonlinear map may be bounded but discontinuous, or continuous

at zero but discontinuous at other points.

The following theorem, sometimes called the BLT theorem for “bounded linear

transformation” has many applications in defining and studying linear maps.

Theorem 5.19 (Bounded linear transformation) Let X be a normed linear

space and Y a Banach space. If M is a dense linear subspace of X and

T : M ⊂ X → Y

is a bounded linear map, then there is a unique bounded linear map T : X → Y

such that Tx = Tx for all x ∈ M . Moreover,
∥∥T
∥∥ = ∥T ∥.

Proof. For every x ∈ X , there is a sequence (xn) in M that converges to x. We

define

Tx = lim
n→∞

Txn.

This limit exists because (Txn) is Cauchy, since T is bounded and (xn) Cauchy,

and Y is complete. We claim that the value of the limit does not depend on the

sequence in M that is used to approximate x. Suppose that (xn) and (x′
n) are any

two sequences in M that converge to x. Then

∥xn − x′
n∥ ≤ ∥xn − x∥ + ∥x − x′

n∥,

and, taking the limit of this equation as n → ∞, we see that

lim
n→∞

∥xn − x′
n∥ = 0.

It follows that

∥Txn − Tx′
n∥ ≤ ∥T ∥ ∥xn − x′

n∥ → 0 as n → ∞.

Hence, (Txn) and (Tx′
n) converge to the same limit.

The map T is an extension of T , meaning that Tx = Tx, for all x ∈ M , because

if x ∈ M , we can use the constant sequence with xn = x for all n to define Tx. The

linearity of T follows from the linearity of T .

The fact that T is bounded follows from the inequality
∥∥Tx

∥∥ = lim
n→∞

∥Txn∥ ≤ lim
n→∞

∥T ∥ ∥xn∥ = ∥T ∥ ∥x∥ .

It also follows that
∥∥T
∥∥ ≤ ∥T ∥. Since Tx = Tx for x ∈ M , we have

∥∥T
∥∥ = ∥T ∥.
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One way to obtain a linear functional on a linear space is to start with a linear

functional defined on a subspace, extend a Hamel basis of the subspace to a Hamel

basis of the whole space and extend the functional to the whole space, by use

of linearity and an arbitrary definition of the functional on the additional basis

elements. The next example uses this procedure to obtain a discontinuous linear

functional on C([0, 1]).

Example 5.57 Let M = {xn | n = 0, 1, 2, . . .} be the set of monomials in C([0, 1]).

The set M is linearly independent, so it may be extended to a Hamel basis H . Each

f ∈ C([0, 1]) can be written uniquely as

f = c1h1 + · · · + cNhN , (5.27)

for suitable basis functions hi ∈ H and nonzero scalar coefficients ci. For each

n = 0, 1, 2, . . ., we define ϕn(f) by

ϕn(f) =

{
ci if hi = xn,

0 otherwise.

Due to the uniqueness of the decomposition in (5.27), the functional ϕn is well-

defined. We define a linear functional ϕ on C([0, 1]) by

ϕ(f) =
∞∑

n=1

nϕn(f).

For each f , only a finite number of terms in this sum are nonzero, so ϕ is a well-

defined linear functional on C([0, 1]). The functional is unbounded, since for each

n = 0, 1, 2, . . . we have ∥xn∥ = 1 and |ϕ(xn)| = n.

A similar construction shows that every infinite-dimensional linear space has

discontinuous linear functionals defined on it. On the other hand, Theorem 5.35

implies that all linear functionals on a finite-dimensional linear space are bounded.

It is not obvious that this extension procedure can be used to obtain bounded

linear functionals on an infinite-dimensional linear space, or even that there are

any nonzero bounded linear functionals at all, because the extension need not be

bounded. In fact, it is possible to maintain boundedness of an extension by a

suitable choice of its values off the original subspace, as stated in the following

version of the Hahn-Banach theorem.

Theorem 5.58 (Hahn-Banach) If Y is a linear subspace of a normed linear space

X and ψ : Y → R is a bounded linear functional on Y with ∥ψ∥ = M , then there is

a bounded linear functional ϕ : X → R on X such that ϕ restricted to Y is equal

to ψ and ∥ϕ∥ = M .

We omit the proof here. One consequence of this theorem is that there are

enough bounded linear functionals to separate X , meaning that if ϕ(x) = ϕ(y) for

all ϕ ∈ X∗, then x = y (see Exercise 5.6).

What are the key differences?

1. BLT allows the output to be any Banach space, while HB restricts to R, i.e., BLT is for general linear transfor-
mations, HB is only for linear functionals (a specific type of linear transformation).

2. BLT requires a dense subspace, but guarantees a unique extension. HB doesn’t require a dense subspace, but
also doesn’t guarantee a unique extension.

Our book doesn’t have the most general version of Hahn-Banach, so here is a more general version, but we don’t
prove it (proof relies on Zorn’s lemma). Royden and Reed/Simon have proofs, for example.

Theorem 1 (Hahn-Banach, general). Let X be a linear space over a field F (= R or C). Let p : X → R be a
real-valued functional on X satisfying

p(x+ y) ≤ p(x) + p(y), ∀ x, y ∈ X “sub-linear”
p(αx) = |α| p(x), ∀ α ∈ F, x ∈ X “positive homogeneous”.

Furthermore, let Y ⊂ X be a subspace of X and let ψ : Y → F be a linear functional on Z such that

|ψ(x)| ≤ p(x), ∀ x ∈ Y.

Then ψ has a linear extension ϕ : X → F with

|ϕ(x)| ≤ p(x), ∀ x ∈ X.

Note that sub-linearity implies p(x) = 0, and using this with the positive homogeneous property implies p(x) ≥ 0
for all x ∈ X.
If ψ is a bounded linear functional, then choosing p(x) = ‖ψ‖ · ‖x‖ shows that the general version implies the Thm.

5.58 version.
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