
Gregory's quadrature method

Gregory's method is among the very first quadrature formulas ever described in the literature, dating

back to James Gregory (1638-1675). It seems to have been highly regarded for centuries, but it is less

often seen nowadays. Reference [1] offers an operator algebra type derivation, but it also makes the

puzzling comment "Gregory's formula, as a rule, is not used for numerical quadrature but sometimes for

summation". Later text book authors, in the habit of nowadays mostly copying from each other, usually

ignore Gregory's method altogether. Nevertheless, it is one of the real gems from long ago.

1. Introduction: Concept behind Gregory's formula, and summary of the rest of these notes

The key idea is that virtually all the errors in the classical trapezoidal rule comes from what happens at

the ends of the interval, and that these errors can be greatly reduced by a sequence of 'end corrections'.

For simplicity of notation, we start by considering the approximation of a convergent integral ¶0
∞
f (x)dx

based on the function values only at the integer locations , A really crude approxi-x� = � � = 0, 1, 2,¢
mation would be

(1)¶
0

∞

f (x)dx l �
�=0

∞

f (�) = f (0) + f (1) + f (2) +¢

In the next several sections of these notes, we will

- Develop a sequence of 'end corrections' at for increasing the accuracy of (1),x = 0

- Generalize the node locations from to , where h denotes an arbitrary spacingx� = � x� = �h
between the nodes,

- Change the integration interval from to an arbitrary finite interval . In that step, the[0,∞] [a,b]
assumption that the integral converges over the infinite interval can be dropped.

- Discuss Gregory's method and, in particular, compare it with Simpson's method.

The last three sections of these notes focus on its numerical implementation:

- Provide a Matlab code for generating the Gregory weights,

- Give a numerical example,

- Tabulate the exact (rational) quadrature weights.

2. Sequence of end corrections

We know from the trapezoidal rule that the coefficient for in (1) ought to be rather than 1. If wef (0) 1
2

used a node spacing of h (instead of just), this simple change in the first coefficient will reduceh = 1
the overall error from to . It is then natural to further ask whether additional end correctionsO(h) O(h2)
can reduce the errors, in some step-by-step manner, to any desired order. This is not at all implausible,

given that the trapezoidal rule is spectrally accurate over for analytic functions that decay suffi-[−∞,∞]
ciently fast in both directions. All algebraic error terms must therefore come from what happens at the

 boundary. These error terms ought to be possible to identify and remove. Euler-MacLaurin'sx = 0
formula does this, but requires us to know high derivatives at the end point. The Gregory approach is

conceptually similar, but requires no such extra information.

With the notation

� f (x�) = f (x�+1) − f (x�)

we obtain

 ,

�0 f (0) = f (0)
�1 f (0) = f (1) − f (0)
�2 f (0) = f (2) − 2f (1) + f (0)
�3 f (0) = f (3) − 3f (2) + 3f (1) − f (0)
§ §

where we recognize the coefficients as coming from the successive lines of Pascal's triangle. We next

try to 'correct' (1) by adding yet unknown amounts of the terms above

(2) ¶
0

∞

f (x)dx = �
�=0

∞

f (�) + [b0�
0 + b1�

1 + b2�
2 + b3�

3 +¢] f (0)

A major advantage in the formulation (2) (as opposed to trying to find the Gregory weights directly) is

that the sequence of increasing order Gregory methods will just correspond to including additional terms

in the expansion (2), with a single set of coefficients bk. In contrast, all the quadrature weights change

whenever the order of the approach is changed. Hence, the expansion (2) serves as a very convenient

intermediate step towards calculating the actual weights.

At this point, we recall that an arbitrary periodic function over can be written as a combination of[0, 2�]
 (a Fourier series) and that functions that decay fast enough over similarly can beei k x, k c Z [−∞,∞]

written as combinations of (real) (a Fourier transform). One might therefore guess thatei�x, � c R
functions that decay for increasing x similarly can be written as combinations of where f (x) e− zx

. Substituting into (2) gives, after a few quick simplificationsRe z > 0 f (x) = e− z x

.
1
z = 1

1 − e− z + [b0 − b1(1 − e−z) + b2(1 − e−z)2 − b3(1 − e−z)3 + −¢]

After changing variables , i.e. , we getw = 1 − e−z z = − log(1 −w)

, (3)
1

log(1 − w) + 1
w = −b0 + b1w − b2w

2 + b3w
3 − +¢

and can therefore pick up the unknown coefficients by Taylor expanding the function
1

log(1 − w) + 1
w

around Multiplying up the denominators, utilizing the elementary Taylor expansion for function w = 0.
 and then equating coefficients lead to a simple recursion for calculating any number oflog(1−w)

b-coefficients. Expressed in matrix form, the coefficients are obtained by back substitution in the trian-

gular Toeplitz system

, (4)

1

− 1
2 1
1
3 − 1

2 1

− 1
4

1
3 − 1

2 1

§ § • •

b0

b1

b2

b3

§

=

− 1
2
1
3

− 1
4
1
5

§

from which follows

b0 = − 1
2 ,b1 = 1

12 ,b2 = − 1
24 ,b3 = 19

720 ,b4 = − 3
160 ,b5 = 863

60480 ,b6 = − 2751
24192 ,¢

Analysis (which we do not include here) will show that, for each extra coefficient that is included, the

overall accuracy will increase with one power of h (in the case of using a spacing of h rather than just

the special case of h = 1).

3. Change of grid spacing from h = 1 to a general h

We first rearrange (2) in terms of modified weights near the left end

¶
0

∞

f (x)dx l �
�=0

∞

c� f (�)

where a number of the leading no longer are equal to one. After this, one merely inserts an h in frontc�
of the sum. For nodes , the quadrature formula thus becomesx� = �h

 . (5)¶
0

∞

f (x)dx l h �
�=0

∞

c� f (x�)

If we include k correction terms, the coefficients have been modified while thec�, � = 0,1,¢, k − 1
remaining ones remain at the value one.c�, � = k, k + 1,¢

4. Change to a finite integration interval

Also this change is trivial. All that is required is to apply the corrections described by (5) for the left end

of the interval also (but backwards) at the right end. When all is said and done, the first and the last c�
coefficient will be the same, then the second and the next-to-last the same, etc.

5. Brief discussion

It is well known that the trapezoidal rule usually is pretty bad, with an error of size . However, asO(h2)
noted above, the key exceptions arise if the problem either is periodic or on an infinite interval, when the

accuracy for sufficiently smooth functions becomes spectral. The two enhanced approaches for bounded

intervals that modern text books tend to focus on are

i. Newton-Cotes formulas (including Simpson's rule), and

ii. Gaussian quadrature (GQ).

If GQ can be used, that is often a good option. However, assuming as we do here that the function to be

integrated is only available at equispaced node locations, GQ is is not directly applicable.

Simpson's rule / Newton Cotes formulas have several shortcomings:

- The accuracy of Simpson is only . Higher orders are sufficiently awkward to reach that aO(h4)
they are seldom used.

- With the Simpson quadrature weights it is necessary to have an odd
h
3 [14242¢24241],

number of nodes. Higher order versions come with still more awkward node number restrictions.

It is not trivial to just jack up the order step-by-step.

- The oscillating Simpson / Newton-Cotes weights across the whole interval is a very clumsy

approach to handle errors that have their cause in what happens only at the two boundaries. One

can obtain Simpson's rule on a grid spaced h by Richardson extrapolating two trapezoidal

approximations, based on grids h and 2h. In the important cases for which trapezoidal rule is

spectrally accurate, 'contaminating' the grid h-based approximation with one using 2h grossly

damages the accuracy. The Gregory approach involves no such accuracy destruction for smooth

functions.

 - As we will see in the test case in Section 7 below, it is trivial to run Gregory for a succession of

increasing orders (without any restrictions on the number of nodes that are used).

6. Matlab code for generating the Gregory weights

function w = Gregory(n_nodes,h,order)

% This function calculates the Gregory quadrature weights for equispaced integration
% n_nodes Total number of nodes
% h Step size
% order Order of accuracy desired, 2,3,4,... (with 2 giving the trapezoidal
% rule). The value must satisfy 2 <= order <= n_nodes
% w Output: The weights to be used for the successive function values
%
% If f is a row vector containing the function values, the integral is
% approximated by the statement integral = f*w'

% Create the sequence of Gregory coefficients
r = 1./(1:order); gc = toeplitz(r(1:order-1),[r(1),zeros(1,order-2)])\r(2:order)';

% Create the weights vector w and then update it at the two ends of the interval

w = ones(1,n_nodes)*h;
w_updates = sum(h*repmat(gc,1,order-1).*pascal(order-1,1));
w(1:order-1) = w(1:order-1)-w_updates(1:order-1);

w(n_nodes-order+2:n_nodes) = w(n_nodes-order+2:n_nodes)-fliplr(w_updates(1:order-1));

7. Numerical example of using the Gregory method

The following main script tests the function Gregory by approximating for a variety¶−1
1
exdx = e1 − e−1

of choices of the variables n_nodes and order:

% Test the Gregory code for evaluating the integral of exp(x) over [-1,1]

exact = exp(1)-exp(-1); % Exact value for integral
for n_nodes = 11:10:31 % Loop over the number of nodes n_nodes
 h = 2/(n_nodes-1);
 x = linspace(-1,1,n_nodes); f = exp(x);
 for order = 2:8 % Loop over increasing orders
 w = Gregory(n_nodes,h,order); % Get the Gregory weights
 int = f*w'; % Evaluate the integral
 [n_nodes,order] % Print out [n_nodes,order]
 error = int-exact % Print out the error
 end

end

If we order the results produced by this test program in the form of a table, we get

n_nodes = 11 21 31

order = 2 0.0078 0.0020 8.7045e-004

 3 9.7460e-004 1.2510e-004 3.7405e-005

 4 8.0001e-005 5.5814e-006 1.1425e-006

 5 1.5622e-005 5.2890e-007 7.1695e-008

 6 1.3010e-006 2.6528e-008 2.5251e-009

 7 3.4126e-007 3.0112e-009 1.8488e-010

 8 2.3506e-008 1.5047e-010 6.7168e-012

As a practical method for error estimation, one can just see how much the approximated integral values

vary when the order is successively increased.

8. Tables of weights

Since the weights are the same at the two interval ends (although in reversed order) and they just scale

directly with the step size h, it suffices here to list the beginning weights (at the left interval edge) in the

case of h = 1. The Matlab code

c = zeros(10,10);
for order = 2:10
 cf = Gregory(20,1,order); c(order,:) = cf(1:10);
end
c(2:10,:)

produces (for orders 2-10) the output

 0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 0.4167 1.0833 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 0.3750 1.1667 0.9583 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 0.3486 1.2458 0.8792 1.0264 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 0.3299 1.3208 0.7667 1.1014 0.9813 1.0000 1.0000 1.0000 1.0000 1.0000
 0.3156 1.3922 0.6240 1.2441 0.9099 1.0143 1.0000 1.0000 1.0000 1.0000
 0.3042 1.4604 0.4535 1.4714 0.7394 1.0825 0.9886 1.0000 1.0000 1.0000
 0.2949 1.5259 0.2570 1.7989 0.4119 1.2790 0.9231 1.0094 1.0000 1.0000
 0.2870 1.5890 0.0360 2.2409 -0.1406 1.7209 0.7021 1.0725 0.9921 1.0000

It is also straightforward to implement the coefficient algorithm in Mathematica rather than in Matlab,

instead producing the weights in exact rational form. These exact values can be convenient to use if one

just wants to implement Gregory's method for some fixed order of accuracy. For the nontrivial weights

in the output above, this gives

1

2

5

12

13

12

3

8

7

6

23

24

251

720

299

240

211

240

739

720

95

288

317

240

23

30

793

720

157

160

19087

60480

84199

60480

18869

30240

37621

30240

55031

60480

61343

60480

5257

17280

22081

15120

54851

120960

103

70

89437

120960

16367

15120

23917

24192

1070017

3628800

5537111

3628800

103613

403200

261115

145152

298951

725760

515677

403200

3349879

3628800

3662753

3628800

25713

89600

1153247

725760

130583

3628800

903527

403200
− 797

5670

6244961

3628800

56621

80640

3891877

3628800

1028617

1036800

§ § § § § § § § § •

The last few rows give an indication about why extremely high orders of Gregory's procedure might not

be advisable. Just like for Newton-Cotes methods of very high orders, the weights start to grow and

oscillate, causing a danger of accuracy losses due to numerical cancellations.

Reference:

[1] Fröberg, C-E., Introduction to Numerical Analysis, Addison-Wesley, Second Edition, 1969.

