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The coupling of some types of oscillators requires the mediation of a physical link between them, rendering
the distance between oscillators a critical factor to achieve synchronization. In this paper, we propose and
explore a greedy algorithm to grow spatially embedded oscillator networks. The algorithm is constructed in
such a way that nodes are sequentially added seeking to minimize the cost of the added links’ length and
optimize the linear stability of the growing network. We show that, for appropriate parameters, the stability
of the resulting network, measured in terms of the dynamics of small perturbations and the correlation length
of the disturbances, can be significantly improved with a minimal added length cost. In addition, we analyze
numerically the topological properties of the resulting networks, and we find that, while being more stable, their
degree distribution is approximately exponential and independent of the algorithm parameters. Moreover, we
find that other topological parameters related with network resilience and efficiency are also affected by the
proposed algorithm. Finally, we extend our findings to more general classes of networks with different sources
of heterogeneity. Our results are a step in the development of algorithms for the directed growth of oscillatory
networks with desirable stability, dynamical and topological properties.
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I. INTRODUCTION

The dynamics of large networks of coupled oscillators is
of interest in many applications, including power grid systems
[1–3], circadian rhythms [4], oscillatory brain rhythms [5,6],
and pedestrian synchronization [7]. Finding characteristics of
network structure that promote synchronization has been a
subject of much research, and various techniques have been
proposed to optimize the synchronization of oscillators cou-
pled on a network [8–12]. While coupled oscillator networks
can often be analyzed by ignoring their spatial component,
there are important cases in which these networks are spa-
tially embedded, including power grid systems [1–3], inner
ear hair cells [13,14], cortical circuits [6], and electromechan-
ical oscillators [15]. In these cases, one should consider also
spatial constraints when optimizing the synchronization of the
oscillators.

Here we consider the problem of optimizing the syn-
chronization of a growing network of spatially embedded
oscillators while also minimizing the cost of the added con-
nections. An illustrative example for our problem is the
growth of electrical power grids. It is desirable for power grids
to remain in a strongly synchronized regime as new nodes are
added, while at the same time there is pressure to minimize
the cost of the added lines. The cost of these lines depends
on the geographical location of the added node and exist-
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ing nodes. In this context, previous works have considered
the growth of power grids by designing the addition of new
nodes to optimize properties of the resulting network, such
as redundancy [16], robustness to the removal of nodes, path
length [17], and other topological features such as variability
in betweenness centrality and clustering coefficient (for more
details, see [18]). However, the interplay between the mini-
mization of line costs and the need to optimize the stability
of the synchronized state has not been explored (Ref. [12]
optimizes synchronizability, which is a related but different
quantity).

In this paper, we consider a growing network of coupled
oscillators where new nodes are characterized by a stochastic
geographical location, and the connections to existing nodes
are chosen so as to maximize the synchronization properties
of the network and minimize the cost of the added connec-
tions. In contrast to previous works that focus on optimizing
topological properties of the growing networks [16–18], we
propose a greedy algorithm that directly optimizes their
synchronization properties. More precisely, our algorithm op-
timizes a combination of the cost of the connections, taken to
be proportional to the total Euclidean length of the network
links, and a measure determinant of linear stability (a similar
combination has been proposed for the growth of the Internet
[19]). Remarkably, we find that by using our algorithm, the
stability and synchronization of the grown oscillator networks
can be significantly improved without an appreciable increase
in line length.

Our paper is organized as follows. In Sec. II we present
our growing oscillator network model and the optimization
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algorithm. In Sec. III we analyze the topological and dy-
namical properties of the oscillator networks obtained from
the growing algorithm. Next, in Sec. IV we show that the
algorithm can also be applied to networks with different levels
of heterogeneity. Finally, we discuss our results and present
our conclusions in Sec. V.

II. MODEL AND METHODS

The growing oscillator network model is specified by the
dynamics of individual oscillators and by the node addition
process. The oscillator model will be presented in Sec. II A
and the node addition process in Sec. II B.

A. Oscillator model and stability

For the dynamics of individual oscillators, we will use
the Kuramoto model with inertia [2], a rich oscillator model
that, under some approximations (see Appendix A), can be
used to model the dynamics of power grid systems. While the
growing network process will be discussed in Sec. II B, for
now we assume that the network has a fixed number N of
oscillators, where each oscillator is characterized by a phase
θi, i = 1, 2, . . . , N , an intrinsic frequency �i, and a damping
constant αi. The phase of oscillator i evolves according to

θ̈i(t ) = �i − αiθ̇i(t ) +
N∑
j

Ki j sin[θ j (t ) − θi(t )], (1)

where Ki j represents the coupling strength from oscillator j
to oscillator i. For simplicity, we will assume that Ki j = KAi j ,
where K is constant and Ai j are the entries of an N × N
unweighted, symmetric adjacency matrix A. However, later
we will discuss the case of weighted coupling matrices. By
moving to a comoving rotating frame, we can assume without
loss of generality that the average frequency is zero, 〈�〉 = 0.
The state of each node can be represented by its phase angle
θi and its angular velocity ωi = dθi/dt .

Depending on parameters, system (1) admits incoherent,
partially, and fully synchronized solutions, and additional dy-
namical features such as hysteresis [20,21]. We will assume
here that synchronization is desirable, and focus on the sta-
bility of the fully synchronized solution. For the example
of power grids, full synchronization is necessary for proper
operation of the grids [1–3]. The fully synchronized solution
is given by the fixed point ωi = 0, dωi/dt = 0, corresponding
to the phases θi = θ∗

i that satisfy the equation

0 = �i + K
N∑
j

Ai j sin(θ∗
j − θ∗

i ). (2)

For small angle differences, the equilibrium can be approx-
imated by

θ∗ ≈ 1

K
L†�, (3)

where L† is the pseudoinverse of the Laplacian matrix
L = diag(

∑n
j=1 Ai j ) − A, θ∗ = [θ∗

1 , θ∗
2 , . . . , θ∗

N ]T , and � =
[�1,�2, . . . , �N ]T . In the case of weighted networks, the
definition of the Laplacian can be straightforwardly extended
by replacing A with K.

The stability of the synchronized solution θ̇i = 0, θi = θ∗
i is

determined by linearization of Eq. (1). It has been shown in [3]
that for a large class of network topologies, a stable synchro-
nized state with cohesive phases |θ∗

i − θ∗
j | � γ < π/2 can be

achieved when

� ≡ 1

K
‖BTL†�‖∞ < sin(γ ), (4)

where B is the directed incidence matrix. Note that, taking
the limit γ → π/2 and recalling the small phase difference
approximation of the equilibrium in Eq. (3), Eq. (4) reduces
to

� ≈ ‖BT θ∗‖∞ < 1, (5)

which can be interpreted as saying that, in order to achieve
stable synchronization, it is sufficient that the worst (largest)
difference between the steady phase of connected pairs in
the network is lower than 1 [3]. The variable � is then an
easily calculated index of stability, with a lower � being an
indication of a more linearly stable network [22].

In the next section, we present a network growth model
where, each time a node is added, a combination of line
cost and � is minimized by using a greedy algorithm. The
main motivation for this problem is the growth of the power
grid under the addition of power generation units (see Ap-
pendix A), but our results could be relevant for other situations
where the stability of growing oscillator networks needs to be
maintained.

B. Spatial network growing algorithm

In this section, we present the model for spatial network
growth. In this model, nodes are sequentially added to the
network at locations chosen stochastically from a prescribed
probability density function. It is assumed that the addition of
a new node has a cost that is proportional to the Euclidean
length of the links used to connect it to the network, and that
it is desired to minimize the total length of the added links
(the line length) while maintaining the overall stability of the
network. When a new node is connected to the network, a
natural choice is to connect it to the closest nodes so as to
minimize the added line lengths. However, here we propose
that by connecting the new node to other nearby nodes, one
can improve the stability of the network without significantly
increasing the total line length. In the context of power grid
modeling, there have been models for growing power grids
that optimize network metrics such as robustness to node
removal, assortativity, path length, and others [11,16–18];
however, our model specifically addresses the optimization of
a quantity that directly influences dynamical stability. We pro-
pose the following recursive spatial network growth model:

(i) At time t = 0, the algorithm is initialized with a con-
nected seed network of size n0 spatially embedded in a simply
connected region M ⊆ R2. Each node i is characterized by co-
ordinates (xi, yi ) ∈ M and an associated frequency �i chosen
in such a way that

∑n0
i=1 �i = 0.

(ii) At time t > 0, t ∈ N, a new node is created with co-
ordinates (xn0+t , yn0+t ) chosen randomly from a prescribed
probability density f (x, y) with support in M and with
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FIG. 1. (a) A new node (blue) is placed at a position (xt+1, yt+1) chosen randomly from the distribution f (x, y). Potential connections
(dashed lines) to the q closest nodes are evaluated, and the r connections with the lowest cost function C are established. Networks constructed
by following the growing algorithm with added node positions chosen (b) with the x and y positions chosen independently from Gaussians
centered at 0.5 and with standard deviation 1/8, and truncated so that the positions remain in (0,1), and (c) the y position is chosen uniformly
in (0,1), and the x coordinate is chosen from a piecewise constant distribution given by 8/5 for 0 < x < 1/2, 2/5 for 1/2 < x < 1, and 0
otherwise. The other parameters of the algorithm are s = 0.5, q = 5, and r = 2. The initial seed networks have 10 nodes placed uniformly in
the square (0.4, 0.6) × (0.4, 0.6) connected via their minimum spanning tree, and the final network has 510 nodes.

associated frequency �n0+t chosen randomly from a proba-
bility distribution g(�).

(iii) The frequencies are rebalanced so that the mean fre-
quency remains zero. Motivated by power grid models where
only generating nodes (those with � j > 0) can be adjusted,
we modify only the positive frequencies as follows:

�i →
{

�i, �i � 0,

�i − �t+1

N+
· · · , �i > 0, i < n0 + t, (6)

where N+ is the number of previously existing nodes with
positive frequency. We note, however, that a simple shift

�i → �i − 1

n0 + t

n0+t∑
j=1

� j

produces similar results. We also note that the zero average
frequency condition can be relaxed as discussed in Sec. IV.

(iv) The newly added node establishes r links to exist-
ing nodes, where the r nodes are chosen among the closest
q nodes in such a way that the following cost function is
minimized:

C = s� + (1 − s)L, (7)

where L is the total (Euclidean) line length after the new node
is connected to the other r nodes, � is defined in Eq. (4), and
s ∈ [0, 1].

(v) Steps (ii)–(iv) are repeated until a network of desired
size N is produced.

The first term on the right-hand side of the cost function
[Eq. (7)] controls the degree of influence of the linear stability
in the growing algorithm, while the second term controls the
cost of establishing lines. A value of s = 0 seeks only to
minimize the line cost, and s = 1 seeks to enhance the linear
stability of the resulting network. Figure 1(a) illustrates the
addition of a new node to the existing network (black circles
with solid red lines). The new node (blue circle) is added at
a random position, and potential links (dashed lines) to the
q = 5 closest nodes are evaluated. The r links that minimize

C are established, and the procedure is then repeated with a
new node.

Figures 1(b) and 1(c) show two networks constructed by
following the previous algorithm. In 1(b), the x and y posi-
tions are chosen independently from a Gaussian distribution
centered at 0.5, with standard deviation 1/8, and truncated
so that the positions (xi, yi ) remain within the region M =
(0, 1) × (0, 1). In 1(c), the y position is chosen uniformly in
(0,1), and the x coordinate is chosen from a piecewise constant
distribution given by 8/5 for 0 < x < 1/2, 2/5 for 1/2 < x <

1, and 0 otherwise. The other parameters are s = 0.5, q = 5,
and r = 2. The seed network consists of 10 nodes placed
uniformly in the square (0.4, 0.6) × (0.4, 0.6) connected via
their minimum spanning tree. The frequency distribution g(�)
here, and in the rest of the paper unless indicated, is uniform
in [−1, 1].

III. DYNAMICAL AND TOPOLOGICAL FEATURES
OF THE GROWING NETWORKS

In this section, we show first how the algorithm can in-
crease the stability of the grown networks with a negligible
added cost. Then, we study additional dynamical character-
istics of the grown networks such as linear stability and the
correlation length of perturbations, and topological indica-
tors such as degree distribution, clustering coefficient, and
betweenness centrality.

A. Reduction of � with negligible cost

The basis of the growing algorithm is that, by allowing for
connections to more distant nodes, the parameter � is reduced
at the expense of increasing total line length L. Therefore, we
expect that, as s varies, � decreases as L increases. This is
verified in Fig. 2(a), where we plot � versus L averaged over
100 realizations as s is varied from 0 to 1 (indicated by the
color bar) for q = 5. The inset shows the same data for q = 3
(black circles), q = 5 (red x’s), and q = 10 (blue +’s). While
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FIG. 2. (a) Stability parameter � vs total line length L averaged
over 100 realizations for q = 5, r = 2. The parameter s is varied from
0 to 1 as indicated in the color bar. The inset shows the same results
for q = 3 (black circles), q = 5 (blue ×’s), and q = 10 (red +’s).
(b) Results from the toy model described in Appendix B showing
similar qualitative results.

the plot confirms the above expectations, it also reveals the
following behavior:

(i) Remarkably, for low values of s there is a very sharp and
significant decrease in � with an almost negligible increase in
line length L.

(ii) For a fixed line length L, � decreases with
increasing q.

The first observation can be understood heuristically by
considering the situation in which a new node is added, and
two potential connections are considered to nodes i and j. If
node i is much more beneficial to minimize � than node j,
but its distance to the new node is slightly larger than that of
node j, a small but positive value of s allows for the selection
of node i while only slightly increasing L. To understand the
second observation, one can imagine all the possible ways
in which a total line length L is achieved. Since networks
created using higher q are obtained by allowing more potential
connections, they allow for more chances to minimize �, and
thus they should result, on average, in a lower value of �.

The above heuristic arguments are based solely on local
considerations, and they ignore the full complexity of how �

depends on the network and the node parameters. To show
that local considerations can indeed result in the observed
behavior, we considered a toy model where nodes are added
sequentially, and the distances to and phase differences from
potential connections are sampled from appropriate distri-
butions (see Appendix B for details). This stochastic model

FIG. 3. (a) The value of K at which the synchronized fixed point
loses stability, Kc, and (b) the total line length L as a function of s
for r = 2 (black circles), r = 3 (red x’s), and r = 4 (blue diamonds).
The symbols show an average over 100 realizations, and the bars
represent one standard deviation.

reproduces qualitatively the numerical results, as shown in
Fig. 2(b).

In summary, although the growing algorithm is based on
the competition between line length and stability, the results in
Fig. 2 show that one can improve stability without increasing
the line length by (i) using small values of s, or (ii) increasing
q and adjusting s appropriately.

B. Reduction of critical coupling constant

The growing algorithm is designed to minimize �, which
is a convenient indicator of linear stability. To study how the
linear stability of the grown networks is actually improved,
we perform the following numerical experiment. First we set
K at a value high enough such that the grown networks have
linearly stable fixed points for all s in (0,1) (we used K = 7).
For a given value of s, we grow a network of N = 100 nodes.
Solving numerically Eq. (1), the phases θi settle at their fixed
point values θ∗

i . Then, we adiabatically decrease K until, at
some value K = Kc, the system loses stability. The value of Kc

is averaged over 100 realizations and the process is repeated
for different values of s. The critical coupling strength Kc

is plotted versus s in Fig. 3(a) for q = 5 and r = 2 (black
circles), 3 (red ×’s), and 4 (blue diamonds). For r = 2 there is
a significant reduction in the critical coupling as s is increased,
corresponding to a more linearly stable system. For r = 3
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FIG. 4. (a) Logarithm of the distance between the fixed point xp and the perturbed trajectory x as a function of time. Blue, red, and black
curves correspond to three sample trajectories of networks generated with s = 0, 0.5, and 1, respectively. The magenta line corresponds to a
straight line with slope equal to −α/2 showing that the decay of the perturbed trajectories towards the fixed point follows an exponential decay
with rate −α/2. (b) Frequency spectrum of the perturbations xp for various values of s. (c) Histogram of the imaginary part of the eigenvalues
(11) of the state-dependent Laplacian for various values of s.

and r = 4, Kc is smaller since there are more connections
overall, but the reduction in Kc as s is increased is not as
significant because the number of options when connecting a
new node is reduced (e.g., there are five options when making
r = 4 connections to q = 5 nodes, versus 10 options when
making r = 2 connections to q = 5 nodes). Complementing
the results shown in Fig. 2, we see that by increasing s from
0 to 0.85 for r = 2, Kc is decreased by approximately 40%
while the line length, shown in Fig. 3(b), increases only by
about 10%.

C. Linear stability

Now we study the linear stability properties of the networks
grown using our algorithm. We have shown that higher values
of s reduce the critical coupling Kc at which the fixed point
θ∗ becomes linearly unstable. Here we show that, on the
other hand, for high enough values of K the linear stability
properties of the grown networks are largely independent of s.

The linearization around the equilibrium ω∗
i = 0 and θ∗

i
given by Eq. (3) of the system (1) results in

δθ̇i = δωi, (8)

δω̇i = −αδωi − K
N∑

j=1

L(θ∗)i jδθ j, (9)

where

L(θ∗)i j =
{−Ai j cos(θ∗

j − θ∗
i ), i �= j,

−∑N
k �=i Lik, i = j

are the entries of the so-called state-dependent Laplacian ma-
trix L(θ∗) [11]. This shorthand notation allows us to write the
Jacobian matrix of the system as

J =
[

0 I
−KL(θ∗) −αI

]
, (10)

where I is the N × N identity matrix. With this formulation,
the eigenvalues of the Jacobian matrix can be expressed as

μi = −α

2
± 1

2

√
α2 − 4Kλi(L(θ∗)), (11)

where λi(L(θ∗)) is the ith eigenvalue of L(θ∗). Whether or
not an eigenvalue μi has a positive real part is determined
by whether the eigenvalues λi(L(θ∗)) are all positive or not.
When Ai j |θ∗

i − θ∗
j | < π/2 for all connected i, j, L(θ∗) is

diagonally dominated and positive-semidefinite. In that case,
and considering a low damping regime of the oscillators, all
the eigenvalues μi have the same negative real part, −α/2.
The condition Ai j |θ∗

l − θ∗
i | < π/2 for all connected nodes i, j

is obtained when � ≡ 1
K ‖BTL†�‖∞ < 1. Since B, L†, and �

are independent of K , for large enough K the fixed point θ∗ is
linearly stable, with Jacobian eigenvalues having identical and
negative real parts. To test this prediction, we generate net-
works at varying values of s and fixed K . For each network, we
perturb the nodal variables x = (θ, ω) from the synchronized
fixed point xp, and we plot in Fig. 4(a) the logarithm of the
Euclidean distance between the perturbed trajectory and the
fixed point, ‖x − xp‖, as a function of time for all networks.
From linearization one would expect that the distance evolves
as ‖x − xp‖ ∝ exp(μt ), where μ is the leading eigenvalue
of the Jacobian. As seen in Fig. 4(a), the decay rate of the
perturbations is independent of s and approximately equal to
−α/2 (see the magenta line with slope −α/2). This is not
surprising as the real part of the eigenvalues is associated
with the decay rate of the perturbations, and this value is
independent of s, as mentioned before. Interestingly, we also
find that the frequency response of the perturbations, seen in
the frequency spectrum [Fig. 4(b)] and in the distribution of
the imaginary part of the eigenvalues [Fig. 4(c)], is also largely
independent of s. Thus, for large K , the linear response of
the system does not depend on s. For moderate values of K ,
however, as shown in Fig. 3(a) and discussed earlier, the value
of s can be determinant for the linear stability of the fixed
point.
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FIG. 5. (a) Sample correlation length function for s = 1 (red) and s = 0 (blue) indicating the first zero crossing. (b) First zero crossing
of the correlation length function as a function of s (symbols) for K = 2 at three different values of r indicated in the legend of the figure.
(c) Relative change between s = 0 and 1 for different values of q at a fixed value of r. We used n0 = 6, N = 94, q = 5. We used r = 2 in
panels (a) and (c). The correlation length function is calculated averaging 20 iterations for each s.

D. Correlation length function

With the aim of further assessing the level of network re-
silience, we calculated the correlation length function of small
(but finite) perturbations. Given a perturbation at a given node,
the correlation length function ξ (d ) is defined as the average
correlation between the phase dynamics of every pair of nodes
(i, j) in the network at a topological distance Di j = d . The
topological distance for every pair of nodes in the network, in
turn, is calculated as the length of the shortest path between
them. Altogether, the correlation length function reads

ξ (d ) = 1

Nd

∑
(i, j):Di j=d

⎛
⎝

∑
t [θi(t ) − θ̄i][θ j (t ) − θ̄ j]√∑
t [θi(t ) − θ̄i]2[θ j (t ) − θ̄ j]2

⎞
⎠.

(12)
Here Nd is the number of pairs of nodes at a given distance

d , and θ̄i is the time average of the phase θi(t ). It is useful
to calculate the first zero crossing of the correlation function
(ξ0) and use this as an indicator of how far the effect of a
perturbation propagates through the network.

In Fig. 5(a) we report ξ (d ) for s = 0 (blue line) and s = 1
(red line). For this test, we have assumed a connection strength
K = 2 to guarantee consistent degrees of synchronization.
From this panel, it is possible to see how networks generated
via a line-length optimization criteria (s = 0) have a larger
value of correlation length ξ0 ≈ 4, in contrast to networks gen-
erated following a �-minimization algorithm (s = 1), which
gives ξ0 ≈ 3. This trend was consistent across all the values
of s ∈ [0, 1] for r = 2 and 3, where a consistent decrease of
ξ0 was found at increasing s [see Fig. 5(b)]. However, at r = 4
there is virtually no difference between the correlation length
at s = 0 and 1. To better understand the trend of ξ0 at varying
values of q, we introduced the relative change of an indicator
x between its s = 0 value and the s = 1 value, namely

Q〈x〉 = 〈x〉s=0 − 〈x〉s=1

〈x〉s=0
× 100%. (13)

In this equation, and in the following, 〈x〉 represents the
average across realizations of x. In the case of the correla-
tion length x ≡ ξ0, the result of this indicator is depicted in

Fig. 5(c), where Q〈ξ0〉 increases from 5% (q = 3) to ≈25%
(q = 10). This indicates that the decreasing trend of ξ0 with
increasing s is maintained by varying q. However, the changes
are relatively small.

In conclusion, decreased correlation length is a desired
property of the network as it limits the extent of the effect
of a perturbation at a given node. According to our analysis,
this can be achieved with a �-minimization scheme.

E. Degree distribution

We proceeded to quantify some topological indicators to
describe the resulting networks for different s. First we cal-
culated the degree distribution, which fits an exponential
function and is insensitive to the value of s. Figure 6(a) shows
the degree distribution of networks constructed with s = 0
(black), s = 0.5 (red), and s = 1 (blue) with three different
values of r. This type of distribution has been reported, for
instance, in power grid connectivity in Ref. [23]. In the same
reference, the authors considered a growth model in which
nodes are placed spatially according to a two-dimensional
Poisson point process with constant density, and these are con-
nected to the closest r nodes [i.e., our model with s = 0 and
constant f (x, y)]. Using a mean-field approach, the authors
showed that the degree distribution of the resulting network
has an exponential tail with exponent ln[r/(1 + r)]. Remark-
ably, this theoretical estimate [dashed line in Fig. 6(a)], valid
in principle only for s = 0, describes well the degree distri-
butions obtained from our model with s = 0.5 and 1 as well.
This can be understood by the empirical observation that when
a node connects to the network, the choice of which r nodes
it connects to has very little correlation with the degree of
these nodes, as can be verified in Fig. 6(b). For this figure,
we perform one realization of network growth, storing at each
growing step the quartiles to which the degrees of the r con-
nected nodes belong. As seen in the figure, the distribution of
the quartiles is quite uniform, indicating the lack of correlation
between the connected nodes and their degree.

Now we show that, using this assumption, the degree dis-
tribution is exponential with exponent ln[r/(1 + r)] even in
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FIG. 6. (a) Degree distribution of N = 1000 networks con-
structed using our model using r = 2 (left), r = 3 (middle), and
r = 4 (right) for s = 0.0 (black), s = 0.5 (red), and s = 1.0 (blue).
(b) Quartile to which the degree of the nodes that new nodes connect
to belongs to s = 0.0 (black), s = 0.5 (red), and s = 1.0 (blue).

the case in which nodes are placed according to a nonuni-
form density f (x, y). Let n(x, y, k, t ) be the density of nodes
with degree k at position (x, y) at time t , and consider how
the number of nodes of degree k in a small region S with
area �A around (x, y) is expected to change in one time
step,

n(x, y, k, t + 1)�A − n(x, y, k, t )�A

= n(x, y, k − 1, t )�Au − n(x, y, k, t )�Au, (14)

where

u = f (x, y)�Ar∑N
k=r n(x, y, k, t )�A

(15)

accounts for the probability that the added node is in the
region S [ f (x, y)�A], and the probability that it connects to
a given node, obtained from the ratio of links established to
the total number of nodes in S [r/

∑N
k=r n(x, y, k, t )�A]. Sim-

plifying, and approximating n(x, y, k, t + 1) − n(x, y, k, t ) ≈
dn(x, y, k, t )/dt , we obtain the rate equation

dn(x, y, k, t )

dt
= f (x, y)r

n(x, y, t )
[n(x, y, k − 1, t ) − n(x, y, k, t )],

(16)

where n(x, y, t ) = ∑N
k=r n(x, y, k, t ). As t → ∞, we look for

a stationary solution of the form

n(x, y, k, t ) = n̄(x, y, k)t, (17)

n(x, y, t ) = f (x, y)t . (18)

Inserting this ansatz in Eq. (16) and simplifying, we obtain

n̄(x, y, k) = r

1 + r
n̄(x, y, k − 1), (19)

so that the limiting distribution n̄ is exponential,

n̄(x, y, k) = n̄(x, y, r)eln ( r
1+r )(k−r). (20)

F. Other topological indicators

Although the degree distribution of the generated networks
is insensitive to s, other topological properties are affected by
the choice of s. We computed other topological measures that
characterize the generated networks, namely the average be-
tweenness centrality of the network (b), the average clustering
coefficient (c), and the characteristic path length (l), defined
below:

b = 1

N

∑
i

∑
s,t �=i

nst (i)

Nst
, (21)

c = 1

N

∑
i

Ti

T
, (22)

l = 1

N (N − 1)

∑
i, j

Di j . (23)

In Eqs. (21)–(23), nst is the number of shortest paths from
nodes s and t that pass through i, and Nst is the total number
shortest paths from s to t . Ti is the number of triangles in which
node i is involved, and T is the number of connected triplets
in the network. Also, Di j is the length of the shortest path
between the pair of nodes (i, j). At this level of description,
the differences between networks created at different weights
s start to emerge.

It has been proposed in [17,18] that resilient power grids
are characterized by topologies with small values of aver-
age betweenness. The networks in our algorithm show a
decreasing trend of 〈b〉 for increasing s [see Fig. 7(a)] for
the three considered values of r. This suggests that topo-
logical resilience is increased when seeking higher stability
of the network. Conversely, the same authors showed that a
larger clustering coefficient and a small characteristic path are
indicators of efficient power networks with reduced energy
losses. From this perspective, the networks generated with our
algorithm tend to improve the characteristic path length with
increasing s, while at the same time decreasing the cluster-
ing coefficient, as seen in Figs. 7(b) and 7(c), indicating the
need for a tradeoff between resilience and effectiveness in our
networks. It is worth noting that while the trends described
above are maintained for all the values of r studied, the rel-
ative differences between small and large s are much more
noticeable at low r. Of course the relative change between
the topological indicators at small and large s depends on
the chosen value of q, namely the number of first neighbors
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FIG. 7. Topological indicators: Ensemble average of (a) betweenness centrality, (b) clustering coefficient, and (c) characteristic path length
as a function of s. In all panels, three values of r were used, namely r = 2 (black), r = 3 (red), and r = 4 (blue). For each value of s, 100
realizations of the algorithm were made with n0 = 6 and N = 100. Error bars denote the standard deviation across realizations.

that the greedy algorithm evaluates before choosing r connec-
tions. To check this, we calculate the quantity Q〈x〉 defined
in Eq. (13), with 〈x〉 = {〈b〉, 〈c〉, 〈l〉}, which is depicted in
Fig. 8 by fixing r = 2. In this figure, it is possible to see that
when increasing the value of q, the relative change between
s = 0 and 1 increases for all the indicators, especially for
the clustering coefficient where it changes from 40% to 80%.
Recall that, according to the definition in Eq. (13), a positive
value of Q〈x〉 is the result of a decreasing trend of the indicator
at large s. From this, one can easily see that the clustering
coefficient decreases more dramatically at large q. This is not
surprising because the clustering coefficient reflects how well
connected each node’s neighbors are between them. Larger q
means that it is likely that neighbors are far apart, and there-
fore the chances that said neighbors are connected between

FIG. 8. Relative change between average topological indicators
obtained at s = 0 and 1 expressed as a percentage. For this figure, a
fixed value of r = 2 was set, and then the relative difference between
the topological indicator obtained at s = 0 and 1 is expressed as
a percentage for varying q. Symbols as expressed in the legend.
Parameters of network generation as in Fig. 7.

them are lower. The results varying q and r seem to point
out that considering more candidate nodes to connect to may
have considerable effects on the efficiency of the network,
as clustering is better achieved with local connections. This
preference towards local connectivity (decreased line length),
however, should be balanced with the dynamical features of
the network encompassed by the indicator �.

IV. EFFECT OF HETEROGENEITY IN THE NETWORK

Many real-world networks have some degree of hetero-
geneity. For instance, the maximum capacity of the lines
in power grid networks differs when passing from the high
voltage transmission system to the power distribution system
in populated centers. Also, in general oscillator networks,
each node is usually described by a different natural oscil-
latory frequency. With this in mind, we studied the effect
of heterogeneity when growing networks with our greedy
algorithm. The results are summarized in Fig. 9. Panels (a)
and (b) show the averaged value of � as a function of L at
different values of s, considering that at each growing step
the strengths of the connections Ki j are chosen according to a
predefined distribution. In the case of panel (a), the connection
strength is chosen with equal probability from the discrete set
Ki j = {2/3, 4/3}. This multimodal connection distribution is
inspired by the hierarchical nature of transmission lines in
power transport systems. Similarly, panel (b) was constructed
choosing at each iteration a connectivity strength drawn from
a Gaussian distribution with mean value K̄ = 1 and standard
deviation σ (K) = 0.2. For these two panels, it is possible
to observe that the general trend of the growing algorithm
remains unchanged with respect to the main result discussed
in Fig. 2. Not only this, but also the range in which � varies
is quite similar in both cases and seems to be only driven by
the average value K̄ which is identical in both distributions.

A second source of heterogeneity may come from the os-
cillator’s natural frequency �i. In the case discussed in this
work, �i is drawn from a uniform distribution and imposing
a frequency balance inspired by the behavior of power grids.
With the aim of showing the generality of the approach pro-
posed here, we also consider the case in which �i at each
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FIG. 9. Stability parameter � vs total line length L averaged over 100 realizations for q = 5, r = 2. The parameter s is varied from 0
to 1 as indicated in the color bar. In (a) for each newly created link its strength is chosen randomly from the discrete set K = {2/3, 4/3}
with equal probability. In (b) connection strength is chosen from a Gaussian distribution with average K̄ = 1 and σ (K) = 0.2. In (c) the
oscillator’s frequency are chosen from a uniform distribution with support U ∈ [0.9 1.1]. In (d) the oscillator’s frequency is chosen for a
Gaussian distribution with �̄ = 1 and σ (�) = 0.1.

step is drawn from different distributions without requiring
zero average frequency condition. In panel (c) we consider yet
again uniformly distributed �i with � ∈ [0.9 1.1], i.e., disre-
garding step (iii) of the algorithm. Similarly, panel (d) depicts
the case in which �i is drawn from a Gaussian distribution
centered at �̄ = 1 with standard deviation σ (�) = 0.1. As
in the previous panels, the algorithm leads to a similar trend,
namely that there is an improvement of � with a negligible
cost of L, however the actual values of � are now higher in
the Gaussian distribution, despite the fact that in both cases
the average �̄ = 1. This can be understood on the basis that
� tends to be higher for networks with large variability of
the intrinsic frequencies of the oscillators. Although both dis-
tributions share the same mean, the variance of the Gaussian
distribution is higher and therefore the resulting networks are
more heterogeneous. Despite these small differences, we can
conclude that the results presented in this work are general
and can be applied to networks with different sources of
heterogeneity.

V. CONCLUDING REMARKS

In this paper, we have proposed a greedy algorithm for
the growth of oscillatory networks embedded in a Euclidean
space, which uses the information of the added length and a
readily available indicator of the linear stability of the result-
ing network. We have found that with a slight increase in the
total added line, we could obtain a significant improvement
of the phase-cohesiveness of the network—a measure of the
degree of stability of the synchronized state—and therefore
network dynamical robustness.

Next, we studied the effect that the different growing pro-
tocols had on the linear stability properties of the system,

measured by the critical coupling of the resulting networks
and the eigenvalues of the Jacobian matrix. We showed that
the critical coupling can be substantially reduced when con-
sidering a growing protocol that seeks to minimize �.

Other approaches to reduce the critical coupling and
improve phase-cohesiveness in Kuramoto complex networks
have been proposed from an optimization perspective (see,
for instance, [8,10,24]). These methods attempt to allocate the
different network properties (connectivity, frequency of the
oscillators, weight of the edges) which optimizes a desired
synchronization measure. In contrast, our algorithm is based
on purely local and stepwise measures based on real-world
constraints such as the spatial location of the element of the
network.

The analysis of the linear dynamical features of the sys-
tem (dynamics around the equilibrium state) led to some
surprising effects. For example, the dynamics of the network
were virtually unchanged under different values of s. Not
only are perturbations damped at the same rate (an expected
behavior from the spectrum of eigenvalues), but also the
frequency component of the evolution of the perturbation
remained unchanged with different s (an effect that cannot be
directly concluded from the eigenvalue expression). Despite
the evidence that s does not affect the dynamics of small
perturbations, it had a dramatic effect in decreasing the re-
sulting critical coupling of the networks, a definitely desired
attribute when stable synchronized dynamics is required, for
instance in power grids. Other approaches to the optimization
of network stability properties have been studied before. For
instance, in [11] the authors used variational equations to
find connectivity values that enhanced network dynamics in
terms of the real part of the eigenvalues, quantifying the rate
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at which the system is able to damp perturbations. It should
be noticed that, in contrast with the cited reference, we used
small values of α leading to complex eigenvalues with iden-
tical real parts, and therefore a similar type of dynamics in
terms of perturbation damping.

The results on intermediate perturbation response showed
that the extent to which perturbations are transferred to the
network (correlation length) can be decreased by considering
an optimization process taking into consideration the value
of �. Decreasing the correlation is a highly desired prop-
erty which might mitigate cascading failures, a well-known
catastrophic effect in power grids [25,26]. Other approaches
to assess network stability to finite perturbations in networks
have been proposed in terms of basin stability in power grids
[27,28], Kirchhoff indices [29], and finite size Lyapunov ex-
ponents [30,31]. All these tools can be complementary and
could lead to important new insights into the nonlinear nature
of networks grown with our proposed algorithm.

We found that tuning the relative importance of the added
length versus the dynamical stability of the network has little
to no effect on the degree distribution of the resulting network.
Indeed, the networks generated with the algorithm all have an
exponential degree distribution, as has been reported in the
literature for several real-world power grids [23,32–36]. This
is an important characteristic, as the resulting grid remains
a single-scaled network, avoiding the presence of hubs that
heavily undermine network stability.

We also analyzed the effect of the growing protocol on
other topological features of the network, which are also sig-
natures of network efficiency and resiliency that fall out of the
two target variables minimized by the algorithm. In particular,
we saw that these two characteristics compete with each other
when tuning the parameter s. This result advocates for more
complex expressions in the cost function, which may account
for these features as performed in [18]. However, it should
be noticed that our proposal contains the minimal ingredients
that capture the two important elements to account for in
optimizing space embedded networks, namely topology and
dynamics.

Finally, we analyzed the effect of heterogeneous param-
eters in the system. We showed that using heterogeneous
coupling strengths and natural frequencies leads to very simi-
lar results, indicating that the algorithm is robust and relies on
a strong theoretical support. This is not surprising, as Eqs. (2)
and (4) hold true regardless of the underlying distributions
of the connectivity matrix and the values of �. We do not
rule out the possibility that the inclusion of heterogeneity
may have different effects on other measures studied in detail
throughout the paper for homogeneously coupled networks.
As a matter of fact, recent works have shown that heterogene-
ity in power grid networks may affect nonlinear features of the
network such as tripping times and basin stability [37]. This
study is, however, beyond the scope of this paper, and it could
lead to interesting lines of research in the future.
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APPENDIX A: RELATIONSHIP OF POWER GRID
DYNAMICS AND THE SECOND-ORDER

KURAMOTO MODEL

In this Appendix, we show that the second-order Kuramoto
model is equivalent under proper approximations to the dy-
namics of a power grid [1,2]. A power grid consists of N
rotating machines that either supply power to the grid (gen-
erators) or consume it (consumers). The dynamical state of
the ith machine can be quantified via its phase angle φi and
its angular frequency φ̇i. The machines in the grid operate at
the same nominal value �, and the phase deviation of the ith
machine with respect to the reference angle �̃t is

θi = φi − �̃t . (A1)

Power balance requires that the power at the ith node Pm
i

(generator or consumer) shall be equal to the sum of transmit-
ted Pt

i , accumulated Pa
i , and dissipated Pd

i components, i.e.,

Pm
i = Pt

i + Pa
i + Pd

i . (A2)

Dissipated power is proportional to the square of the an-
gular velocity Pd

i = Diθ̇i
2
, where Di is a dissipation constant.

Also, accumulated power is related to the derivative of the
kinetic energy of the machine via the relation Pa

i = 1
2 Ii

d (φ̇i )2

dt ,
with Ii being the moment of inertia. Finally, transmitted power
between two connected machines i and j is proportional
to the sine of the phase difference and the capacity of the
transmission line connecting the elements P̄i j , therefore Pt

i, j =
P̄i j sin(φi − φ j ) = P̄i j sin(θi − θ j ). Putting together these ex-
pressions in Eq. (A2), we obtain

Pm
i = Diφ̇

2
i + 1

2
Ii

d (φ̇i )2

dt
+

∑
j

P̄i j sin(φi − φ j ). (A3)

Recalling Eq. (A1) and using the fact that phase deviations
are small compared with the grid frequency, that is, �̃ � |θ̇i|,
Eq. (A3) takes the form

Ii�̃θ̈i = Pm
i − Di�̃

2 − 2Di�̃θ̇i +
∑

j

P̄i j sin(θ j − θi ). (A4)

Redefining the parameters as

�i = Pm
i − Di�̃

2

Ii�̃
, (A5)

αi = 2Di

Ii
, (A6)

Ki j = P̄i j

Ii�̃
(A7)

leads to Eq. (1). This model is formally known in engi-
neering as the swing equation. Notice that in defining the
transmitted power, we have considered lossless transmission.
If resistance across transmission lines is included, a slightly
different second-order Kuramoto model is obtained with a
further phase shift in the sine term, namely the transmitted
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power is proportional to sin(θ j − θi − γi j ), where γi j is re-
lated to the angle between the real and imaginary part of the
transmission line’s impedance. This leads to the more general
Kuramoto-Sakaguchi model.

APPENDIX B: STOCHASTIC MODEL FOR
NODE ADDITION

In this Appendix, we present a toy model that shows that
the effects of the greedy optimization algorithm can be ex-
plained from local stochastic considerations. For simplicity,
here we use a uniform Poisson process with density λ for the
placement of added nodes, i.e., we set

f (x, y) = λ = 1∫
M dxdy

. (B1)

We start with two nodes at time t = 0 and assume that
the initial angle difference δ1 = θ1 − θ2 is sampled from a
Gaussian distribution with mean σ . The value of σ depends on
the value of K used: larger values of K correspond to smaller
σ . At time t = 0, the line length is L(0) = 0, the stability

parameter is �(0) = |θ1 − θ2|, and the set of angle differences
is D(0) = {δ1}.

The model then proceeds recursively as follows: at time
t = 0, 1, 2, 3, . . . , when we already have a set of n = 1 + rt
angle differences D(t ) = {δ1, δ2, . . . , δn}, line length L(t ),
and stability parameter �(t ), we simulate the addition of
a new node connected to r existing nodes. We sample the
distances x1, x2, . . . , xq from the new node to the q closest
nodes from the appropriate random variables that describe the
2D point Poisson process. For example, the distance x1 to the
closest node when N nodes have been added has density

f (x1) = 2Nπλx1
(
1 − λπx2

1

)N−1
. (B2)

Similarly, we generate the potential angle differences
δ̃n+1, δ̃n+2 . . . , δ̃n+q between the new node and the q poten-
tial nodes from a Gaussian distribution with mean σ . Then
we let �̄ j = max (|δ̃ j |,�(t )), Lj = L(t ) + x j and choose the
r nodes i1, i2, . . . , ir with the smallest cost function s�̄ j +
(1 − s)Lj . We then update the angle differences set to D(t +
1) = {δ1, δ2, . . . , δn, δ̃i1 , δ̃i2 , . . . , δ̃ir }, the stability parameter
to �(t + 1) = maxδ∈D{|δ|}, and the line length to L(t + 1) =
L(t ) + xi1 + · · · + xir . In Fig. 2 we used λ = 0.4, σ = 0.5, and
we simulated the process until t = 200. Each point represents
the average of 100 realizations.
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