
Preliminary Exam
Partial Differential Equations
1:30 - 4:30 PM, Fri. Jan. 10, 2019
Room: Newton Lab (ECCR 257)

Student ID:

There are five problems. Solve four of the five problems.
Each problem is worth 25 points.
A sheet of convenient formulae is provided.

# possible score
1 25
2 25
3 25
4 25
5 25

Total 100

1. Quasilinear first order equations.
Consider the Cauchy problem

ut + (u+ u2)ux = 0, x ∈ R, t > 0,
u(x, 0) = f(x), x ∈ R.

(1)

(a) Suppose f ∈ C1(R) and f , f ′ are bounded functions. Prove that a continuously
differentiable solution u(x, t) to Eq. (1) exists and is unique for x ∈ R, t ∈ [0, t∗)
for some t∗ > 0.

(b) Provide an additional, necessary condition on f for the solution to Eq. (1) to
exist for all t > 0, i.e., for u(x, t) to remain continuously differentiable for all
t > 0.

Solution:

(a) Use the method of characteristics. Since

du
dt = 0 along the characteristic curves x(t) satisfying dx

dt = u+ u2,

we can integrate each of these ODEs to obtain

u(x, t) = f(x0), along x = (u+ u2)t+ x0.

This is the implicit solution for u

u(x, t) = f(x− (u+ u2)t). (2)

By the boundedness of f and f ′, there exist M,M ′ > 0 such that

|f(x)| < M, |f ′(x)| < M ′, x ∈ R.

In order to guarantee existence of a solution to this implicit equation, we define
the mapping

F (u, x, t) = u− f(x− (u+ u2)t), F : R× R2 → R



and apply the implicit function theorem. By virtue of the continuous differen-
tiability of f , F ∈ C1(R × R2). Applying the initial data, F (f(x0), x0, 0) = 0.
We compute

∂F

∂u
= 1 + f ′(x0)(1 + 2u)t.

Then, for t < T = 1
(1+2M)M ′ , Fu 6= 0 and the implicit function theorem implies

that there exists a unique u ∈ C1(R × [0, t∗)) such that F (u(x, t), x, t) = 0 for
some 0 < t∗ < T as desired.

(b) The Cauchy problem (1) suffers from the possibility of finite time singularity
formation in which |ux| → ∞ as (x, t) → (xb, tb). To check when this occurs,
we use the implicit form of the solution (2) to compute

ux = f ′(x0)(1− t(1 + 2u)ux)

⇒ ux = f ′(x0)
1 + t(1 + 2f(x0))f ′(x0) .

Consequently, a necessary condition to ensure that ux is finite for all t > 0 is
the requirement that

(1 + 2f(x0))f ′(x0) ≥ 0, x0 ∈ R ⇐⇒ d
dx(f(x) + f(x)2) ≥ 0, x ∈ R.

In other words, f(x) + f(x)2 must be a monotone increasing function of x.

2. Heat Equation.
Let D = (0, L)× (0, T ] and assume that u ∈ C(D̄) ∩ C2(D) is a solution to

ut(x, t) = g(x)uxx(x, t) + F (x, t), 0 < x < L, 0 < t ≤ T. (3)
u(x, 0) = f(x), 0 < x < L,

u(0, t) = r(t), 0 < t ≤ T,

u(L, t) = s(t), 0 < t ≤ T,

where g(x) > 0 for all x ∈ (0, L).

(a) Let B = D̄\D. If F ≤ 0, prove that

max
D̄

u(x, t) = max
B

u(x, t).

(b) Prove that the solutions to Eq. (3) are unique.

Solution:

(a) First, let’s prove the case F < 0. Suppose that the statement is not true. Then,
the maximum of u would be attained at a point (x0, t0) with 0 < x0 < L,



0 < t ≤ T . By basic calculus, we would have ut(x0, t0) ≥ 0, ux(x0, t0) = 0,
uxx(x0, t0) ≤ 0. Evaluating (3) at this point, we would have

F (x0, t0) = ut(x0, t0)− g(x0)uxx(x0, t0) ≥ 0,

which contradicts F < 0. When F ≤ 0, we can define uε = u − εt. Then
uεt = guεxx − ε and we can apply the previous case with F − ε < 0 to get
maxD̄ uε(x, t) = maxB uε(x, t). Letting ε→ 0, we obtain the desired result.

(b) Suppose there are two solutions to (3), u1 and u2. Then v = u1 − u2 would
satisfy

vt(x, t) = g(x)vxx(x, t), 0 < x < L, 0 < t ≤ T.

v(x, 0) = 0, 0 < x < L,

v(0, t) = 0, 0 < t ≤ T,

v(L, t) = 0, 0 < t ≤ T.

For this system v ≡ 0 vanishes on B by applying part (a) to the IBVP for v and
−v implying u1 ≡ u2 proving uniqueness.

Continue to next page
3. Wave Equation. Consider the initial boundary value problem (IBVP):

utt = c2uxx x > 0, t > 0,
u(x, 0) = 0 x > 0,
ut(x, 0) = ψ(x) x > 0,
ux(0, t) = 0 t > 0.

(a) Use an energy argument to prove the solutions to the above IBVP are unique,
applying minimal assumptions on u(x, t). State these minimal assumptions.
Solution: First define w = u1 − u2, which has corresponding IBVP

wtt = c2wxx, x, t > 0; w(x, 0) ≡ wt(x, 0) ≡ wx(0, t) ≡ 0,

and define the energy E(t) = 1
2
∫∞
0 w2

t (x, t) + c2w2
x(x, t)dx, then

E ′(t) =
∫ ∞

0
wt(x, t)wtt(x, t) + c2wxt(x, t)wx(x, t)dx

=
[
c2wt(x, t)wx(x, t)

]∞
0

+
∫ ∞

0
wt(x, t)

[
wtt(x, t)− c2wxx(x, t)

]
dx

=
∫ ∞

0
wt(x, t) · 0dx = 0,

assuming ut, ux → 0 as x → ∞ and using the Neumann BC. We also know E(0) =
1
2
∫∞
0 02 + 02dx = 0, so E(t) ≡ 0. Assuming ut and ux are C1 and L2 integrable, this

implies wt ≡ wx ≡ 0 implying w ≡ 0 (using w(x, 0) ≡ 0), so u1 ≡ u2.



(b) Solve for u(x, t). What assumptions on ψ are needed for a classical solution?
Solution: The PDE implies (∂t−c∂x)(∂t+c∂x)u = 0 so u = F (x−ct)+G(x+ct), so
when x > ct, u is not influenced by the boundary and d’Alembert’s solution implies

u(x, t) = 1
2c

∫ x+ct

x−ct
ψ(y)dy,

but when x < ct, the boundary condition influences the solution. To see how, note

F (x) +G(x) = 0

−cF ′(x) + cG′(x) = ψ(x) ⇒ −F (x) +G(x) + A = 1
c

∫ x

0
ψ(y)dy

F ′(−ct) +G′(ct) = 0 ⇒ −F (−x) +G(x) +B = 0.

Subtracting the last two integrated equations at x = 0 implies A = B, whereas
summing the first two equations implies

G(x) = 1
2

[1
c

∫ x

0
ψ(y)dy − A

]
,

so that when x < ct, this along with the third equation imply

u(x, t) = F (x− ct) +G(x+ ct) = G(ct− x) + A+G(x+ ct)

= 1
2c

[∫ ct−x

0
ψ(y)dy +

∫ x+ct

0
ψ(y)dy

]
.

We need that ψ ∈ C1; and limx→0+ ψ(x) = 0.

4. Poisson’s Equation/Green’s Functions.
Consider the problem

∆u(x) = f(x), x ∈ Ω, (4)
u(x) = g(x), x ∈ ∂Ω,

where Ω = {x = (x, y, z) ⊆ R3 : z > 0, ‖x‖2 < R}.
(a) Construct an appropriate Green’s function for this problem.
Solution: Leveraging the fundamental solution Φ(x−y) = 1/(4π|x−y|) to −∆u =
δ(x− y) and defining x̂ = (x, y,−z), x̄ = R2x/|x|2, and x̃ = R2x̂/|x|2, we write

G(x,y) = Φ(x− y)− Φ(x̂− y)− Φ( |x|
R
|x̄− y|) + Φ( |x|

R
|x̃− y|),

which vanishes along ∂Ω as along the sphere surface x = x̄ and x̂ = x̃ and along
z = 0 we have x = x̂ and x̄ = x̃.
(b) Using the Green’s function found in (a), construct an explicit formula for the
solution in terms of the functions f and g.



Solution: Using Green’s theorem, we find∫
Ω

(u(y)∆G(x,y)−G(x,y)∆u(y)) dy =
∫
∂Ω

(
u(y)∂G

∂n
(x,y)−G(x,y)∂u

∂n
(y)

)
dSy

−u(x)−
∫

Ω
G(x,y)f(y)dy =

∫
∂Ω

∂G

∂n
(x,y)g(y)dy

u(x) = −
∫

Ω
G(x,y)f(y)dy−

∫
∂Ω

∂G

∂n
(x,y)g(y)dy.

5. Separation of Variables.
Consider the following IBVP for the heat equation

ut = kuxx, x ∈ (0, 1), t > 0, k > 0,
u(x, 0) = f(x), x ∈ (0, 1),
ux(0, t) = u(0, t), t > 0,
ux(1, t) = −u(1, t), t > 0.

(a) Assuming separated solutions u(x, t) = X(x)T (t), derive the boundary value
problem for X(x), and show it is a symmetric Sturm-Liouville problem.
Solution: Plugging the ansatz into the PDE, we have XT ′ = kX ′′T implying

T ′

kT
= X ′′

X
= −λ ⇒ T ′ = −λkT ; X ′′ = −λX,

with boundary conditions X ′(0) = X(0) and X ′(1) = −X(1), so by assuming X, Y ∈
L2(0, 1) with Y ′(0) = Y (0) and Y ′(1) = −Y (1):

〈X ′′, Y 〉 =
∫ 1

0
X ′′(x)Ȳ (x)dx = X ′(1)Ȳ (1)−X ′(0)Ȳ (0)−

∫ 1

0
X ′(x)Ȳ ′(x)dx

= X ′(1)Ȳ (1)−X ′(0)Ȳ (0)−X(1)Ȳ ′(1) +X(0)Ȳ ′(0) +
∫ 1

0
X(x)Ȳ ′′(x)dx

= −X(1)Ȳ (1)−X(0)Ȳ (0) +X(1)Ȳ (1) +X(0)Ȳ (0) +
∫ 1

0
X(x)Ȳ ′′(x)dx

=
∫ 1

0
X(x)Ȳ ′′(x)dx = 〈X, Y ′′〉

(b) Solve for the general form of the solution u(x, t). Make sure you show all eigen-
solutions must decay in time, and do not blow up as t→ 0.
Solution: Starting with the BVP for X(x), we note when λ = −ν2 < 0, solutions
are of the form X(x) = Aνeνx +Bνe−νx, so Robin BCs imply

X(0) = Aν +Bν = ν(Aν −Bν) = X ′(0) → Bν = ν − 1
ν + 1Aν

and

X(1) = Aν

[
eν + ν − 1

ν + 1e−ν
]

= −Aνν
[
eν − ν − 1

ν + 1e−ν
]

= −X ′(1)

→ (ν + 1)eν = (ν − 1)2

ν + 1 e−ν → e2ν = (ν − 1)2

(ν + 1)2 → ν = 0,



and for λ = 0 and X(x) = A + Bx, we have X(0) = A = B = X ′(0) and X(1) =
2A = −A = −X ′(1) implies A = 0, so the only nontrivial solutions are of form
X(x) = Aν sin(νx) +Bν cos(νx) with λ = ν2 > 0, so the Robin BCs imply

X(0) = Bν = νAν = X ′(0)

and

X(1) = Aν(sin ν + ν cos ν) = −νAν(cos ν − ν sin ν) = −X ′(1) → tan ν = 2ν
ν2 − 1

which has an infinite set of solutions ν1,2,3,..., since the RHS is decreasing and positive
for ν > 3 while tan ν is periodic and ranges from (−∞,∞). Moreover, this is a
symmetric SL problem, so it is guaranteed to have a complete orthonormal set of
eigenfunctions.
Clearly ν = 0 is a solution, but this yields the trivial X(x) ≡ 0.
Defining Xj(x) = Aj(sin(νjx)+νj cos(jπx)) = Ajφj(x) and λj = ν2

j , so Tj(t) = e−ν2
j kt,

and

u(x, t) =
∞∑
j=1

Aje−ν
2
j ktφj(x), Aj = 〈φj(x), f(x)〉

〈φj(x), φj(x)〉 .

(c) State minimal assumptions on f(x) needed so u(x, t) ∈ C2 on x ∈ (0, 1) and t > 0.
Solution: We need only that f(x) be L2-integrable, so Aj can be defined and the
series converges for all x ∈ (0, 1) due to the exponential term.


