Preliminary Exam
Partial Differential Equations
1:30 - 4:30 PM, Fri. Jan. 10, 2019
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Room: Newton Lab (ECCR 257)

25

25

Student ID:

25

25

ot x| w| | (I

25

There are five problems. Solve four of the five problems.

Total

100

Each problem is worth 25 points.
A sheet of convenient formulae is provided.

1. Quasilinear first order equations.
Consider the Cauchy problem
uy + (u+ u?)u, =0, reR, t>0,
u(z,0) = f(z), zeR.

(1)

(a) Suppose f € C*(R) and f, f" are bounded functions. Prove that a continuously
differentiable solution u(z,t) to Eq. (1) exists and is unique for z € R, t € [0, t,)

for some t, > 0.

(b) Provide an additional, necessary condition on f for the solution to Eq. (1) to
exist for all t > 0, i.e., for u(x,t) to remain continuously differentiable for all

t > 0.
Solution:

(a) Use the method of characteristics. Since

du
d¢

we can integrate each of these ODEs to obtain

dt

u(z,t) = f(xo), along = (u+ u?)t+ xo.
This is the implicit solution for u
u(z,t) = f(r — (u+u)t).
By the boundedness of f and f’, there exist M, M’ > 0 such that
If(x)] < M, |f'(x)]< M, zeR.

dx
— =0 along the characteristic curves z(t) satisfying —- = u + u?,

In order to guarantee existence of a solution to this implicit equation, we define

the mapping

Fu,z,t) =u— f(x — (u+u®)t), F:RxR>—=R




and apply the implicit function theorem. By virtue of the continuous differen-
tiability of f, ' € C*(R x R?). Applying the initial data, F(f(x),zo,0) = 0.
We compute

OF
S =1t fao)(1+ 20t
Then, fort < T = m, F, # 0 and the implicit function theorem implies

that there exists a unique u € C'(R x [0,t,)) such that F(u(z,t),z,t) = 0 for
some 0 < t, < T as desired.

(b) The Cauchy problem (1) suffers from the possibility of finite time singularity
formation in which |u,| — oo as (z,t) — (ap,t,). To check when this occurs,
we use the implicit form of the solution (2) to compute

Uy = f(z0) (1 — (1 + 2u)uy)
_ f' (o)
1+ t(1+ 2f(20)) f/(20)

Consequently, a necessary condition to ensure that wu, is finite for all ¢ > 0 is
the requirement that

= U,

(14 2/ (20)) f'(50) > 0, 7 €R (ic(f(:z;) + @) >0, 2R

In other words, f(x)+ f(x)? must be a monotone increasing function of .

2. Heat Equation.
Let D = (0, L) x (0,7] and assume that « € C(D) N C?(D) is a solution to

ur(z,t) = g(x)uge(x, t) + F(x,t), O<xz<L, 0<t<T. (3)
u(z,0) = f(x), O<z<L,

u(0,t) = r(t), 0<t<T,

u(L,t) = s(t), 0<t<T,

where g(z) > 0 for all z € (0, L).
(a) Let B = D\D. If FF <0, prove that

max u(z,t) = max u(z,t).

(b) Prove that the solutions to Eq. (3) are unique.

Solution:

(a) First, let’s prove the case F' < 0. Suppose that the statement is not true. Then,
the maximum of u would be attained at a point (xo,ty) with 0 < zy < L,



0 <t < T. By basic calculus, we would have w;(xg,ty) > 0, u.(xo,to) = 0,
Uze(To,to) < 0. Evaluating (3) at this point, we would have

F(xg,t0) = ut(zo,to) — g(x0) Uz (0, to) > 0,

which contradicts FF < 0. When F' < 0, we can define u¢ = u — et. Then
u; = gu,, — € and we can apply the previous case with /' — e < 0 to get
maxj u(z,t) = maxg u(z,t). Letting e — 0, we obtain the desired result.

(b) Suppose there are two solutions to (3), u; and us. Then v = u; — up would

satisfy
v (2, t) = g() Vg (2, 1), O<z<L, 0<t<T.
v(x,0) =0, O<z<lL,
v(0,t) =0, 0<t<T,
v(L,t) =0, 0<t<T.

For this system v = 0 vanishes on B by applying part (a) to the IBVP for v and
—v implying u; = us proving uniqueness.

Continue to next page

. Wave Equation. Consider the initial boundary value problem (IBVP):

Uy = CP Uy x>0,1t>0,

u(z,0) =0 x>0,
u(z,0) =P(x) x>0,
ug(0,1) = 0 t> 0.

(a) Use an energy argument to prove the solutions to the above IBVP are unique,
applying minimal assumptions on u(x,t). State these minimal assumptions.

Solution: First define w = u; — uy, which has corresponding IBVP
Wy = CWae, T,1>0; w(z,0) = w(z,0) =w,(0,t) =0,

and define the energy E(t) = 1 [ w}(z,t) + Pw?(z, t)dz, then

E'(t) = /Ooo wy (2, wy (2, 1) + Cwe(x, t)we(x, t)dx
= [c2wt(x, t)w,(x, t)};o + /Ooo wy(x,t) {wtt(a:,t) — W (7, t)] dx
= /OOO wi(x,t) - 0dz = 0,

assuming us, u, — 0 as © — oo and using the Neumann BC. We also know E(0) =
%fooo 0% + 0?dz = 0, so E(t) = 0. Assuming u; and u, are C' and L? integrable, this
implies w; = w, = 0 implying w = 0 (using w(x,0) = 0), so u; = us.



(b) Solve for u(z,t). What assumptions on 1 are needed for a classical solution?
Solution: The PDE implies (0; — c0,.)(0; +cO,)u = 0 so u = F(x—ct)+G(z+ct), so
when x > ct, u is not influenced by the boundary and d’Alembert’s solution implies

ute,) = = [ vty

& —ct

but when x < ct, the boundary condition influences the solution. To see how, note

F(z)+G(z)=0
~eF/(2) +G'(0) = 9(a) = —F@)+ G+ A= [ yu)dy

F'(—ct)+ G'(ct) =0 = —F(-x)+G(z)+B=0.

Subtracting the last two integrated equations at x = 0 implies A = B, whereas
summing the first two equations implies

G =5 [5 [ vy -4],

so that when x < ct, this along with the third equation imply
u(z,t) =F(zx —ct)+ Gz +ct) = G(ct —z) + A+ G(z + ct)

= [T ety [T v

We need that ¢ € C'!; and lim,_,o+ ¥(z) = 0.

. Poisson’s Equation/Green’s Functions.
Consider the problem

Au(x) = f(x), x €, (4)
u(x) = g(x), x € 09,
where ) = {x = (z,9,2) CR®: 2 > 0,||x]|» < R}.

(a) Construct an appropriate Green’s function for this problem.

Solution: Leveraging the fundamental solution ®(x —y) = 1/(4r|x —y|) to —Au =
§(x —y) and defining X = (z,y, —2), x = R?x/|x|?, and x = R*%/|x|?, we write

~ X| - X|~
Glxy) = ax—y) ~ a(x —y) — o(Z iy oy
which vanishes along 02 as along the sphere surface x = x and X = X and along
z =0 we have x = X and X = X.

(b) Using the Green’s function found in (a), construct an explicit formula for the
solution in terms of the functions f and g.



Solution: Using Green’s theorem, we find
[, ()a6.y) - Gy dutmay = [ (w05 xy) - x50 ) a5,

- [ ey = [ Ty

Q on
= —/QG(X,y)f(y)dy — /m?%cj(X,}’)g(Y)dY-

. Separation of Variables.
Consider the following IBVP for the heat equation

U = kg, ze (0,1), t>0, k>0,
u(z,0) = f(x), z € (0,1),
uz(0,t) = u(0,1), t >0,
u(1,t) = —u(l,t), t>0.
(a) Assuming separated solutions u(x,t) = X(x)T'(t), derive the boundary value
problem for X (z), and show it is a symmetric Sturm-Liouville problem.

Solution: Plugging the ansatz into the PDE, we have XT' = kX"T implying

T/ XI/

_ = = — T/:— T X//:—X

T X A= AET AX,
with boundary conditions X’(0) = X(0) and X'(1) = —X(1), so by assuming X,Y €
L?(0,1) with Y’(0) = Y (0) and Y'(1) = =Y (1):

(X"Y / X"(2)Y (z)dz = X' ()Y (1) — /01
XY (1) = X' ()Y (0) = X(1)Y'(1) + X(0)Y(0) + / )Y (a
—X()Y (1) = X(0)V(0) + X (1)V (1) + )+ / )Y (@

- / 2)Y"(2)dz = (X,Y")

(b) Solve for the general form of the solution u(z,t). Make sure you show all eigen-
solutions must decay in time, and do not blow up as t — 0.

Solution: Starting with the BVP for X (z), we note when A = —v? < 0, solutions
are of the form X (z) = A,e"* + B,e ", so Robin BCs imply

v—1
v+1

X0)=A,+B,=v(A4,—-B,)=X'(0) — B,= A,

and




and for A = 0 and X(z) = A + Bz, we have X(0) = A = B = X’(0) and X(1) =
2A = —A = —X'(1) implies A = 0, so the only nontrivial solutions are of form
X(z) = A, sin(vz) + B, cos(vz) with A = v* > 0, so the Robin BCs imply

X(0) = B, = vA, = X'(0)

2v

X(1)=A,(sinv+vcosv) = —vA,(cosv —vsinv) = —=X'(1) — tanv = T

which has an infinite set of solutions v 23, since the RHS is decreasing and positive
for v > 3 while tanv is periodic and ranges from (—o0,00). Moreover, this is a
symmetric SL problem, so it is guaranteed to have a complete orthonormal set of
eigenfunctions.

Clearly v = 0 is a solution, but this yields the trivial X (z) = 0.

Defining X;(x) = A;(sin(v;x)+v; cos(jnx)) = A;¢;(x) and N; = v7, s0 Tj(t) = e vkt
and

&y ) 630 f@)
ulmt) = L ARG, A= ey

(c) State minimal assumptions on f(x) needed so u(z,t) € C* onx € (0,1) and ¢ > 0.

Solution: We need only that f(z) be L*integrable, so A; can be defined and the
series converges for all x € (0,1) due to the exponential term.



