Preliminary Exam
Partial Differential Equations
9 AM - 12 PM, Fri. Jan. 11, 2019
Room: Newton Lab (ECCR 257)

Student ID:	
Student 1D.	

possible score
1 25
2 25
3 25
4 25
5 25
Total 100

There are five problems. Solve four of the five problems. Each problem is worth 25 points. A sheet of convenient formulae is provided.

1. **Method of characteristics.** Solve the following initial-boundary value problem:

$$u_t + e^{-x}u_x = e^x,$$
 $x > 0, t > 0,$
 $u(x, 0) = f(x),$ $x > 0,$
 $u(0, t) = g(t),$ $t > 0.$

You will need to separate the domain into two regions, and be sure to identify the boundary between the two regions.

Solution: First consider the solution emanating from $x_0(s) = s$, $t_0(s) = 0$, $z_0(s) = f(s)$ (along the t = 0 boundary):

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = \mathrm{e}^{-x}, \quad x_0(s) = s,$$

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = 1, \quad t_0(s) = 0,$$

$$\frac{\mathrm{d}z}{\mathrm{d}\tau} = \mathrm{e}^x, \quad z_0(s) = f(s).$$

We guarantee a unique solution by checking the Jacobian is nonzero along the initial curve:

$$J = \begin{vmatrix} 1 & e^{-s} \\ 0 & 1 \end{vmatrix} = 1 > 0.$$

Integrating the t equation, we find $t = \tau$. Next, integrating the x equation, we find

$$e^x = \tau + e^s$$

This we can plug into the z equation

$$\frac{\mathrm{d}z}{\mathrm{d}\tau} = \tau + \mathrm{e}^s \quad \Rightarrow \quad z = \frac{\tau^2}{2} + \mathrm{e}^s \tau + f(s).$$

Inverting our expressions for x and t, we find

$$u(x,t) = te^{x} - \frac{t^{2}}{2} + f \left[\ln |e^{x} - t| \right],$$

where we require $e^x + 1 > t$ since the argument of f(s) must be positive.

The solution emanating from x = 0 is parameterized by $x_0(s) = 0$, $t_0(s) = s$, $z_0(s) = g(s)$:

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = \mathrm{e}^{-x}, \quad x_0(s) = 0,$$

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = 1, \quad t_0(s) = s,$$

$$\frac{\mathrm{d}z}{\mathrm{d}\tau} = \mathrm{e}^x, \quad z_0(s) = g(s).$$

We guarantee a unique solution by checking the Jacobian is nonzero along the initial curve:

$$J = \left| \begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right| = -1 < 0.$$

Integrating the t equation, we find $t = \tau + s$. Next, integrating the x equation, we find

$$e^x = \tau + 1.$$

Plugging into the z equation, we find

$$\frac{\mathrm{d}z}{\mathrm{d}\tau} = \tau + 1 \quad \Rightarrow \quad z = \frac{\tau^2}{2} + 2\tau + g(s).$$

Inverting our expressions for x and t, we find

$$u(x,t) = \frac{(e^x - 1)^2}{2} + e^x - 1 + g[t + 1 - e^x]$$

where we require $t+1 > e^x$ since the argument of g(s) must be positive. Ultimately:

$$u(x,t) = \begin{cases} te^{x} - \frac{t^{2}}{2} + f \left[\ln |e^{x} - t| \right], & e^{x} > t + 1\\ \frac{(e^{x} - 1)^{2}}{2} + e^{x} - 1 + g \left[t + 1 - e^{x} \right], & t + 1 > e^{x}. \end{cases}$$

2. Heat Equation.

(a) Use energy methods to show the following initial boundary value problem has at most one solution:

$$u_t(\mathbf{x}, t) = f(t)\Delta u(\mathbf{x}, t), \qquad f(t) > 0, \ \mathbf{x} \in \Omega,$$

 $u(\mathbf{x}, 0) = g(\mathbf{x}), \qquad \mathbf{x} \in \Omega$
 $u(\mathbf{x}, t) = h(\mathbf{x}, t) \qquad \mathbf{x} \in \partial\Omega, \qquad t > 0.$

Assume $f(t) \in C^{\infty}[0,\infty)$, $g(\mathbf{x}) \in C^{\infty}(\partial\Omega)$, and $h(\mathbf{x},t) \in C^{\infty}(\partial\Omega \times [0,\infty))$ are all integrable functions and the domain Ω is simply connected.

Solution: Assume there are two solutions u_1 and u_2 , and $w = u_1 - u_2$, then $w_t(\mathbf{x}, t) = f(t)\nabla^2 w(\mathbf{x}, t)$ and $w(\mathbf{x}, 0) = 0$ ($\mathbf{x} \in \Omega$) and $w(\mathbf{x}, t) = 0$ on $\mathbf{x} \in \partial \Omega$. Now set

$$E(t) \equiv \int_{\Omega} w^2(\mathbf{x}, t) d\mathbf{x} \ge 0,$$

since the integrand is nonnegative, so then

$$\frac{\mathrm{d}}{\mathrm{d}t}E(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} w^{2}(\mathbf{x}, t) \mathrm{d}x = \int_{\Omega} 2w(\mathbf{x}, t) w_{t}(\mathbf{x}, t) \mathrm{d}\mathbf{x}$$
$$= 2f(t) \int_{\Omega} w(\mathbf{x}, t) \Delta w(\mathbf{x}, t) \mathrm{d}\mathbf{x} = -2f(t) \int_{\Omega} |\nabla w(\mathbf{x}, t)|^{2} \mathrm{d}\mathbf{x} \le 0,$$

where we have applied the divergence theorem, homogeneous boundaries, and the fact that f(t) > 0. Also, since $w(\mathbf{x}, 0) \equiv 0$, then E(0) = 0, and we can conclude $E \equiv 0$, implying $w \equiv 0$ so $u_1 \equiv u_2$ and there can be no more than one solution.

(b) Find the solution to the heat equation on the n-dimensional half space:

$$u_{t}(\mathbf{x},t) = \kappa \Delta u(\mathbf{x},t), \quad \mathbf{x} \in \Omega \equiv \{\mathbf{x} \in \mathbb{R}^{n} | x_{n} > 0\}, \quad t > 0,$$

$$u(\mathbf{x},0) = f(\mathbf{x}), \quad \mathbf{x} \in \Omega,$$

$$\frac{\partial u}{\partial \mathbf{n}}(\mathbf{x},t) = 0, \quad \mathbf{x} \in \partial \Omega,$$

$$\lim_{|\mathbf{x}| \to \infty} u(\mathbf{x},t) = 0, \quad t > 0,$$

where $\kappa > 0$ is a positive scalar, $f(\mathbf{x})$ is continuous and L^2 integrable on \mathbb{R}^n , and \mathbf{n} is the unit normal to the boundary $\partial\Omega$.

Solution: The fundamental solution is

$$\Phi(\mathbf{x},t) = \frac{1}{(4\pi\kappa t)^{n/2}} e^{-|\mathbf{x}|^2/(4\kappa t)},$$

so, defining $\tilde{\mathbf{x}} = (x_1, x_2, ..., -x_n)$, we can use even reflection to write

$$u(\mathbf{x},t) = \frac{1}{(4\pi\kappa t)^{n/2}} \int_{\Omega} \left[e^{-|\mathbf{x}-\mathbf{y}|^2/(4\kappa t)} + e^{-|\mathbf{x}-\tilde{\mathbf{y}}|^2/(4\kappa t)} \right] f(\mathbf{y}) d\mathbf{y}.$$

Continue to next page

3. Wave Equation. Consider the equation

$$u_{tt}(\mathbf{x}, t) = c^2 \Delta u(\mathbf{x}, t),$$

 $u(\mathbf{x}, 0) = f(\mathbf{x}),$ $\mathbf{x} \in \mathbb{R}^3$
 $u_t(\mathbf{x}, 0) = g(\mathbf{x}),$ $\mathbf{x} \in \mathbb{R}^3$

where c > 0 is a positive scalar, and $f(\mathbf{x})$ and $g(\mathbf{x})$ are rapidly decaying, C^{∞} , and L^2 integrable functions.

(a) Find the equation the average of u:

$$\overline{u}(r,t) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} u(\mathbf{x},t) \sin \phi d\phi \ d\theta$$

satisfies where $\mathbf{x} = (x, y, z)$ and $x = r \cos \theta \sin \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \phi \theta$, such that θ and ϕ are angles in spherical coordinates.

Solution: Averaging $u_{tt}(\mathbf{x},t)$ as such, we simply obtain $\bar{u}_{tt}(r,t)$. Thus, to obtain the new PDE, we integrate the right hand side of the PDE, which we can write in spherical coordinates

$$\begin{split} c^2 \overline{\Delta u(\mathbf{x},t)} &= \frac{c^2}{4\pi} \int_0^{2\pi} \int_0^{\pi} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial u}{\partial \phi} \right) + \frac{1}{r^2 \sin^2 \phi} \frac{\partial^2 u}{\partial \theta^2} \right] \sin \phi \mathrm{d}\theta \mathrm{d}\phi \\ &= \frac{c^2}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \bar{u}}{\partial r}), \end{split}$$

where the second term vanishes because $\sin \pi = \sin 0 = 0$ and the third term vanishes due to periodicity in the spherical coordinate ρ , so

$$\bar{u}_{tt}(r,t) = \frac{c^2}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \bar{u}}{\partial r}(r,t)) = c^2 \left[\frac{\partial^2 \bar{u}}{\partial r^2}(r,t) + \frac{2}{r} \frac{\partial \bar{u}}{\partial r}(r,t) \right].$$

(b) Assume spherical symmetry of initial conditions (f = f(r), g = g(r)) and the solution u = u(r, t), where $r \equiv |\mathbf{x}|$, and write the initial/boundary value problem for the radially symmetric function v(r, t) = ru(r, t).

Solution: In this case,

$$v_{tt} = ru_{tt} = c^2 \left[r \frac{\partial^2 u}{\partial r^2}(r, t) + 2 \frac{\partial u}{\partial r}(r, t) \right] = c^2 \frac{\partial}{\partial r} \left[\left(r \frac{\partial u}{\partial r} \right) + u \right] = c^2 \frac{\partial^2}{\partial r^2} \left[ru \right] = c^2 v_{rr}.$$

Also, v(r,0) = ru(r,0) = rf(r) and $v_t(r,0) = rg(r)$, similarly, so

$$v_{tt}(r,t) = c^2 v_{rr}(r,t), \quad r \in (0,\infty), \ t \in (0,\infty)$$

 $v(0,t) = 0, \quad t \in (0,\infty)$
 $v(r,0) = rf(r), \quad r \in (0,\infty)$
 $v_t(r,0) = rg(r), \quad r \in (0,\infty)$

(c) Find the solution v(r,t) and hence the solution u(r,t).

Solution: Using d'Alembert's formula for the half line with homogeneous Dirichlet boundaries, using odd extension, we define $F_{\text{odd}}(r) = rf(r)$ for r > 0 and $F_{\text{odd}}(-r) = -F_{\text{odd}}(r)$, similarly $G_{\text{odd}}(r) = rg(r)$ for r > 0 and $G_{\text{odd}}(-r) = -G_{\text{odd}}(r)$, so

$$v(r,t) = \frac{1}{2}(F_{\text{odd}}(r+ct) + F_{\text{odd}}(r-ct)) + \frac{1}{2c} \int_{r-ct}^{r+ct} G_{\text{odd}}(s) ds,$$

which can be written piecewise as

$$v(r,t) = \begin{cases} \frac{1}{2}((r+ct)f(r+ct) - (ct-r)f(ct-r)) + \frac{1}{2c} \int_{ct-r}^{ct+r} sg(s)ds, & 0 < r < ct \\ \frac{1}{2}((r+ct)f(r+ct) + (r-ct)f(r-ct)) + \frac{1}{2c} \int_{r-ct}^{r+ct} sg(s)ds, & r \ge ct. \end{cases}$$

Lastly, we change variables back to u(r,t) to obtain

$$u(r,t) = \begin{cases} \frac{1}{2r}((r+ct)f(r+ct) - (ct-r)f(ct-r)) + \frac{1}{2cr} \int_{ct-r}^{ct+r} sg(s)ds, & 0 < r < ct \\ \frac{1}{2r}((r+ct)f(r+ct) + (r-ct)f(r-ct)) + \frac{1}{2cr} \int_{r-ct}^{r+ct} sg(s)ds, & r \ge ct. \end{cases}$$

4. Green's Functions.

(a) Consider Poisson's equation on the tilted half plane

$$\Delta u = f(\mathbf{x}), \qquad \mathbf{x} \in \Omega = \{\mathbf{x} \in \mathbb{R}^2 \mid x_1 + x_2 > 0\},$$

$$u(\mathbf{x}) = g(\mathbf{x}), \qquad \mathbf{x} \in \partial \Omega.$$
(1)

Write the associated Green's function $G_H(\mathbf{x}, \mathbf{y})$ using the method of images, and verify its corresponding boundary value problem.

Solution: Using the method of images, note $\mathbf{x}_H = (-x_2, -x_1)$ maps Ω to $\bar{\Omega}_c$, since for $x_1 + x_2 > 0$, then $-x_2 - x_1 < 0$ and vice versa, so

$$G_H(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y}) - \Phi(\mathbf{x}_H - \mathbf{y}).$$

The corresponding boundary value problem is:

$$\Delta_{\mathbf{x}}G_H(\mathbf{x}, \mathbf{y}) = \delta(\mathbf{x} - \mathbf{y}), \qquad \mathbf{x}, \mathbf{y} \in \Omega,$$

 $G_H(\mathbf{x}, \mathbf{y}) = 0, \qquad \mathbf{x} \in \partial\Omega, \ \mathbf{y} \in \Omega.$

since $\Delta_{\mathbf{x}}\Phi(\mathbf{x}-\mathbf{y}) = \delta(\mathbf{x}-\mathbf{y})$ since it is the fundamental solution to Laplace's equation, and $\Delta_{\mathbf{x}}\phi^{y}(\mathbf{x}) = 0$ on $\mathbf{y} \in \Omega$ since $\mathbf{x} \in \Omega$ implies $\mathbf{x}_{H} \notin \Omega$, then $\Delta_{\mathbf{x}}G_{H}(\mathbf{x},\mathbf{y}) = \delta(\mathbf{x}-\mathbf{y})$. Also, when $\mathbf{x} \in \partial\Omega$, then $x_{1} = -x_{2}$ and $x_{2} = -x_{1}$ and $\mathbf{x} = \mathbf{x}_{H}$ and $G_{H}(\mathbf{x},\mathbf{y}) = \Phi(\mathbf{x}-\mathbf{y}) - \Phi(\mathbf{x}-\mathbf{y}) = 0$.

(b) Consider Poisson's equation on the tilted half disc:

$$\Delta u = f(\mathbf{x}), \qquad \mathbf{x} \in \Omega = \{\mathbf{x} \in \mathbb{R}^2 \mid x_1 + x_2 > 0 \& |\mathbf{x}| < 1\}, \qquad (2)$$

$$u(\mathbf{x}) = 0 \qquad \mathbf{x} \in \partial\Omega.$$

Determine the associated Green's function $G_S(\mathbf{x}, \mathbf{y})$ and show it satisfies the needed boundary conditions. Then, write the solution to Eq. (2) in terms of this Green's function, and show it satisfies $u(\mathbf{x}) = 0$ on $\mathbf{x} \in \partial \Omega$.

Solution: Define $\tilde{\mathbf{x}} = \mathbf{x}/|\mathbf{x}|^2$ and $\tilde{\mathbf{x}}_H = \mathbf{x}_H/|\mathbf{x}|^2$, then

$$G_S(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y}) - \Phi(\mathbf{x}_H - \mathbf{y}) - \Phi(|\mathbf{x}|(\tilde{\mathbf{x}} - \mathbf{y})) + \Phi(|\mathbf{x}|(\tilde{\mathbf{x}}_H - \mathbf{y})).$$

When $\mathbf{x} = (x_1, -x_1) \in \partial \Omega$, then we have

$$G_S(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y}) - \Phi(\mathbf{x} - \mathbf{y}) + \Phi(|\mathbf{x}|(\tilde{\mathbf{x}} - \mathbf{y})) - \Phi(|\mathbf{x}|(\tilde{\mathbf{x}} - \mathbf{y})) = 0,$$

and when $|\mathbf{x}| = 1$ with $\mathbf{x} \in \partial \Omega$, then $\tilde{\mathbf{x}} = \mathbf{x}$ and $\tilde{\mathbf{x}}_H = \mathbf{x}_H$ and $|\mathbf{x}_H| = 1$, so

$$G_S(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x} - \mathbf{y}) - \Phi(\mathbf{x} - \mathbf{y}) + \Phi(\mathbf{x}_H - \mathbf{y}) - \Phi(\mathbf{x}_H - \mathbf{y}) = 0,$$

so $G_Q(\mathbf{x}, \mathbf{y}) \equiv 0$ on $\mathbf{x} \in \partial \Omega$ and $\mathbf{y} \in \Omega$.

Lastly, note that the solution to Eq. (2) in terms of G_S is

$$u(\mathbf{x}) = \int_{\Omega} G_S(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y},$$

so when $\mathbf{x} \in \partial \Omega$ then

$$u(\mathbf{x}) = \int_{\Omega} 0 \cdot f(\mathbf{y}) d\mathbf{y} = 0.$$

Continue to next page

5. Separation of Variables. Consider the forced, damped wave equation

$$u_{tt} = u_{xx} - 2\gamma u_t + e^{-x}, \quad 0 \le x \le L, \quad t > 0,$$

with $\gamma > 0$ and boundary and initial conditions

$$u(0,t) = u(L,t) = 0, \quad t > 0,$$

 $u(x,0) = f(x), \quad x \in (0,L),$
 $u_t(x,0) = 0, \quad x \in (0,L).$

Using separation of variables, find a formal solution u(x,t) to the boundary value problem in terms of the function f(x). (You can assume $\frac{\gamma L}{\pi}$ is not an integer.)

Solution: First, we remove the inhomogeneous term e^{-x} by defining $v(x,t) = u(x,t) + e^{-x} - 1 - \frac{x}{L}(e^{-L} - 1)$. We have

$$v_t = u_t,$$

 $v_{tt} = u_{tt},$
 $v_{xx} = u_{xx} + e^{-x},$
 $v(0,t) = u(0,t) = 0,$
 $v(L,t) = u(L,t) = 0.$

So we obtain the boundary value problem

$$v_{tt} = v_{xx} - 2\gamma v_t, \quad 0 \le x \le L, \quad t > 0,$$

$$v(0,t) = v(L,t) = 0, \quad t > 0,$$

$$v(x,0) = f(x) + e^{-x} - 1 - \frac{x}{L}(e^{-L} - 1), \quad x \in (0,L),$$

$$v_t(x,0) = 0, \quad x \in (0,L).$$

Using separation of variables, we set v(x,t) = X(x)T(t). This gives, with a dot indicating a time derivative and a prime a spatial derivative,

$$X\ddot{T} = TX'' - 2\gamma X\dot{T},$$

from which we get

$$\frac{\ddot{T}}{T} + 2\gamma \frac{\dot{T}}{T} = \frac{X''}{X} = \alpha,$$

where α is a constant. If $\alpha=0$ the X equation yields X(x)=E+Dx, which can't satisfy the boundary conditions unless E=D=0. If $\alpha>0$, $X(x)=Ee^{\alpha x}+De^{-\alpha x}$ which again can only satisfy the boundary conditions X(0)=X(L)=0 if E=D=0. So we take negative α , $\alpha=-\lambda^2$, with λ real. The boundary conditions are satisfied if $\lambda=\lambda_n=\frac{n\pi}{L}$:

$$X_n = \sin\left(\frac{n\pi x}{L}\right).$$

The equation for T gives $\ddot{T} + 2\gamma \dot{T} + \frac{n^2\pi^2}{L^2}T = 0$, with characteristic roots r_n given by

$$r_n = -\gamma \pm \sqrt{\gamma^2 - \frac{n^2 \pi^2}{L^2}}.$$

Assuming $\frac{\gamma L}{\pi}$ is not an integer, the roots are not repeated and we get two cases, depending on whether n is larger or smaller than $M = \frac{\gamma L}{\pi}$:

$$T_n(t) = \begin{cases} e^{-\gamma t} [A_n \sinh(\beta_n t) + B_n \cosh(\beta_n t)], & n < M, \\ e^{-\gamma t} [A_n \sin(\omega_n t) + B_n \cos(\omega_n t)], & n > M, \end{cases}$$

where $\omega_n = \sqrt{\frac{n^2\pi^2}{L^2} - \gamma^2}$ and $\beta_n = \sqrt{\gamma^2 - \frac{n^2\pi^2}{L^2}}$.

Constructing $v(x,t) = \sum_{n=1}^{\infty} X_n(x) T_n(t)$ and $u = v - [e^{-x} - 1 - \frac{x}{L}(e^{-L} - 1)]$ we get

$$u(x,t) = 1 - e^{-x} + \frac{x}{L} (e^{-L} - 1) + e^{-\gamma t} \sum_{n=1}^{M} \sin\left(\frac{n\pi x}{L}\right) \left[A_n \sinh(\beta_n t) + B_n \cosh(\beta_n t)\right]$$
$$+ e^{-\gamma t} \sum_{n=M+1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) \left[A_n \sin(\omega_n t) + B_n \cos(\omega_n t)\right].$$
(3)

To find the constants we need that the initial conditions be satisfied, namely

$$u(x,0) = f(x) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) B_n + 1 - e^{-x} + \frac{x}{L}(e^{-L} - 1),$$

which gives, taking B_n as the Fourier coefficients of $f(x) - 1 + e^{-x} - \frac{x}{L}(e^{-L} - 1)$,

$$B_n = \frac{2}{L} \int_0^L \left[f(x) - 1 + e^{-x} - \frac{x}{L} (e^{-L} - 1) \right] \sin\left(\frac{n\pi x}{L}\right) dx. \tag{4}$$

Similarly, we need

$$u_t(x,0) = 0 = -\gamma \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) B_n + \sum_{n=1}^{M} \sin\left(\frac{n\pi x}{L}\right) \beta_n A_n + \sum_{n=M+1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) \omega_n A_n,$$

or, using
$$f(x) - 1 + e^{-x} - \frac{x}{L}(e^{-L} - 1) = \sum_{n=1}^{\infty} \sin(\frac{n\pi x}{L}) B_n$$
,

$$\gamma[f(x) - 1 + e^{-x} - \frac{x}{L}(e^{-L} - 1)] = \sum_{n=1}^{M} \sin\left(\frac{n\pi x}{L}\right) \beta_n A_n + \sum_{n=M+1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) \omega_n A_n,$$

and we obtain

$$A_n = \begin{cases} \frac{\gamma}{\beta_n} B_n, & n \le M, \\ \frac{\gamma}{\omega_n} B_n, & n > M. \end{cases}$$
 (5)

Together, (3), (4), and (5) constitute a formal solution to the problem.