Preliminary Exam Partial Differential Equations 9 AM - 12 PM, Fri. Jan. 11, 2019 Room: Newton Lab (ECCR 257)

Student ID:_____

#	possible	score
1	25	
2	25	
3	25	
4	25	
5	25	
Total	100	

There are five problems. Solve four of the five problems. Each problem is worth 25 points. A sheet of convenient formulae is provided.

1. Method of characteristics. Solve the following initial-boundary value problem:

$$u_t + e^{-x}u_x = e^x, x > 0, t > 0, u(x, 0) = f(x), x > 0, u(0, t) = g(t), t > 0.$$

You will need to separate the domain into two regions, and be sure to identify the boundary between the two regions.

2. Heat Equation.

(a) Use energy methods to show the following initial boundary value problem has at most one solution:

$$u_t(\mathbf{x}, t) = f(t)\Delta u(\mathbf{x}, t), \qquad f(t) > 0, \ \mathbf{x} \in \Omega,$$

$$u(\mathbf{x}, 0) = g(\mathbf{x}), \qquad \mathbf{x} \in \Omega$$

$$u(\mathbf{x}, t) = h(\mathbf{x}, t) \qquad \mathbf{x} \in \partial\Omega, \qquad t > 0.$$

Assume $f(t) \in C^{\infty}[0,\infty)$, $g(\mathbf{x}) \in C^{\infty}(\partial\Omega)$, and $h(\mathbf{x},t) \in C^{\infty}(\partial\Omega \times [0,\infty))$ are all integrable functions and the domain Ω is simply connected.

(b) Find the solution to the heat equation on the *n*-dimensional half space:

$$\begin{split} u_t(\mathbf{x},t) &= \kappa \Delta u(\mathbf{x},t), \qquad \mathbf{x} \in \Omega \equiv \{\mathbf{x} \in \mathbb{R}^n | x_n > 0\}, \quad t > 0, \\ u(\mathbf{x},0) &= f(\mathbf{x}), \qquad \mathbf{x} \in \Omega, \\ \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x},t) &= 0, \qquad \mathbf{x} \in \partial \Omega, \\ \lim_{|\mathbf{x}| \to \infty} u(\mathbf{x},t) &= 0, \qquad t > 0, \end{split}$$

where $\kappa > 0$ is a positive scalar, $f(\mathbf{x})$ is continuous and L^2 integrable on \mathbb{R}^n , and \mathbf{n} is the unit normal to the boundary $\partial \Omega$.

Continue to next page

3. Wave Equation. Consider the equation

$$\begin{split} u_{tt}(\mathbf{x},t) &= c^2 \Delta u(\mathbf{x},t), \\ u(\mathbf{x},0) &= f(\mathbf{x}), \qquad \mathbf{x} \in \mathbb{R}^3 \\ u_t(\mathbf{x},0) &= g(\mathbf{x}), \qquad \mathbf{x} \in \mathbb{R}^3 \end{split}$$

where c > 0 is a positive scalar, and $f(\mathbf{x})$ and $g(\mathbf{x})$ are rapidly decaying, C^{∞} , and L^2 integrable functions.

(a) Find the equation the average of u:

$$\overline{u}(r,t) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} u(\mathbf{x},t) \sin \phi d\phi \ d\theta$$

satisfies where $\mathbf{x} = (x, y, z)$ and $x = r \cos \theta \sin \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \phi \theta$, such that θ and ϕ are angles in spherical coordinates.

(b) Assume spherical symmetry of initial conditions (f = f(r), g = g(r)) and the solution u = u(r, t), where $r \equiv |\mathbf{x}|$, and write the initial/boundary value problem for the radially symmetric function v(r, t) = ru(r, t).

(c) Find the solution v(r, t) and hence the solution u(r, t).

4. Green's Functions.

(a) Consider Poisson's equation on the tilted half plane

$$\Delta u = f(\mathbf{x}), \qquad \mathbf{x} \in \Omega = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 + x_2 > 0 \}, \qquad (1)$$
$$u(\mathbf{x}) = g(\mathbf{x}), \qquad \mathbf{x} \in \partial \Omega.$$

Write the associated Green's function $G_H(\mathbf{x}, \mathbf{y})$ using the method of images, and verify its corresponding boundary value problem.

(b) Consider Poisson's equation on the tilted half disc:

$$\Delta u = f(\mathbf{x}), \qquad \mathbf{x} \in \Omega = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 + x_2 > 0 \& |\mathbf{x}| < 1 \}, \qquad (2)$$
$$u(\mathbf{x}) = 0 \qquad \mathbf{x} \in \partial \Omega.$$

Determine the associated Green's function $G_S(\mathbf{x}, \mathbf{y})$ and show it satisfies the needed boundary conditions. Then, write the solution to Eq. (2) in terms of this Green's function, and show it satisfies $u(\mathbf{x}) = 0$ on $\mathbf{x} \in \partial \Omega$.

Continue to next page

5. Separation of Variables. Consider the forced, damped wave equation

$$u_{tt} = u_{xx} - 2\gamma u_t + e^{-x}, \quad 0 \le x \le L, \quad t > 0,$$

with $\gamma > 0$ and boundary and initial conditions

$$u(0,t) = u(L,t) = 0, \quad t > 0,$$

$$u(x,0) = f(x), \quad x \in (0,L),$$

$$u_t(x,0) = 0, \quad x \in (0,L).$$

Using separation of variables, find a *formal* solution u(x,t) to the boundary value problem in terms of the function f(x). (You can assume $\frac{\gamma L}{\pi}$ is not an integer.)