Preliminary Examination (Solutions): Partial Differential
Equations,

10 AM - 1 PM, Jan. 18, 2016,

Room Discovery Learning Center (DLC) Bechtel Collab-
oratory.

Student ID:

There are five problems. Solve four of the five problems.
Each problem is worth 25 points. A sheet of convenient formulae
is provided.

# possible | score
1 25
2 25
3 25
4 25
5 25
Total 100

1. (Solution methods) Let 2 = (0,7) x (0,7"), T > 0. Consider the initial, boundary

value problem

Up = 2Uge, O<ax<m, t>0

ug(m,t) =2, wu(0,t)=0, t>0,
u(z,0) = ¢(z), 0<z<m.

(a) Find a formal solution u(x,t) that solves the above initial value problem.

(b) Find sufficient conditions on ¢ such that the formal solution w is classical, i.e.,

it is in C#(2), functions that are twice continuously differentiable for z € [0, 7]
and continuously differentiable for ¢ € [0, 7. For full credit, you must provide a

complete proof of your conclusion.

Solution:

We first need to shift the boundary condition and let v = u — 2z to obtain

v(0,1)
ve(m,t) = 0
v(z,0) = o¢x)—2x.

We then use separation of variables v(x,t) = X (z)T'(t) to obtain

XT' = 2X'T
X/l T/

= = -
X T

Thus we have an equation for X and an equation for 7T'.

(a) Find the formal solution




i. For the X equation
X"=)X

we have that X (z) = Acos fz + Bsin z (with A = 32 ) and the boundary
conditions give us

X0)=0—-A4=0
and

1
X’(W):O:Bﬁcosﬁwﬁﬁn:n%—ﬁ, n=0,1,....

These results mean
X, (z) = Bysin((n+1/2)z), n=0,1,....
ii. For the T equation, we have that
T = —2\T
which has solution T'(t) = Ce™ .
iii. Therefore we obtain the formal series solution
v(x,t) = i B, sin(B,x)e 24t
n=0

iv. By equating this series to the initial data

v(x,0) = ¢(z) — 22 = i B, sin B,x

n=0

we have that 5

B, = - /07r sin(f,x) (¢(x) — 2z) dx.

Thus the formal solution is
u(z,t) => B, sin(Bna)e 2% + 22 . (1)
n=0

(b) For the above formal solution to be classical, it is sufficient that ¢(0) = 0,
¢'(7) = 2, ¢"(0) = 0, and ¢ € C*[0, ).

Convergence of u(x,t): To illustrate the source of these restrictions, first
consider the formal series for u(z,t) in Eq. (1). We require this series to be
uniformly convergent for (z,t) € Q and the initial/boundary data to be satis-
fied. For uniform convergence, we invoke the Weierstrass M-test: 3, a,(x,t) is
uniformly convergent if |a,(z,t)| < M, for (z,t) € Q and ¥, M,, < co. Since



| B,, sin(B,z)e 2% < | B,|, we require %, | B,| < co. A sufficient condition for
this inequality to hold is |B,| < C,/n? for n = 1,2,.... We formally compute

an - /Oﬂ(¢(x) — 2z) sin(f,x)dx

™

— _ﬁln(d)m — 21) cos(fBx) 0 + 5171 /OW((ﬁ/(JC) — 2) cos(Bpz)da
M( )+ 5 [ @) =D eos(Baa @
M( )+ 550/ (@) ~ 2)sinha) . 3 [ 0@ sn(sa)ar
= 5000)+ 55(0/(7) = 21" = 5 [ 6/(@)sn(B,a)dr

If we set ¢(0) = 0 and require ¢ € C?[0, 7], then we can uniformly bound the
final integrand |¢"(z) sin(f8,x)| < M” < oo and obtain

C
|B,| < = <

2
2 <2 = ('™ +2) +2M", n=12,...,

as needed.

Convergence to initial data: Because ¢ € C?[0,7] and ¢(0) = 0, ¢ has a
smooth, odd, periodic extension to [—27, 27]. Then the Fourier quarter-sine se-
ries for ¢, u(z,0) — 2z, is guaranteed to converge uniformly to ¢(z) for x € [0, 7]
by Dirichlet’s theorem.

Convergence to boundary data: Since each term in the uniformly convergent
series (1) evaluates to zero at © = 0, we have u(0,f) = 0. We check the other
boundary condition next. Consider u,. In order to be able to differentiate the
series (1) term-by-term, we require each differentiated term to be a) uniformly
continuous and b) for the differentiated series

SW(z,1) ZﬁnB cos(fyx)e —28:t

to be absolutely summable. If these are both true, then S(z,t) converges uni-
formly to the continuous function u,(z,t) for (z,t) € Q.

The first requirement is satisfied because cos(ﬁnx)e*%it is continuous for all
(x,t). Since the domain Q is compact, each term is uniformly continuous.
|8,Bn| < C/n? or |B,| < C/n3 n = 1,2,... is a sufficient condition for ab-
solute summability by the M-test. To obtain sufficient conditions, we resume



the calculation in Eq. (2), imposing the already specified assumptions

1 1 =
2B = F@m =21 - | ¢/ (@) sin(3,)d
= B =+ GG @) g [0 cos(pua
1 1

(& (x) — 2)(=1)" "(0) — 513 /0 " §" () cos(Baz)da.

g B

(3)

If we set ¢'(7) = 2 and require ¢ € C?[0, 7], then we can bound the final
integrand |¢" (x) cos(B,z)| < M" < oo and obtain

c C 2

|B,| < 7 < C=Z1¢"(0)] +2M", n=1,2,....
ooon T

Therefore SM(x,t) converges uniformly to u,(x,t) — 2 for (z,t) € Q. We can
therefore evaluate the series u,(m,t) = SW (7, t) +2 = 2 as required.

Convergence of u,, and u;: The final step is to prove uniform convergence of

the series
o0

S (z,t) = — > BB, sin(8,x)e 2%,
n=0
By similar arguments as given earlier, |B,| < C'/n*, n = 1,2, ... is sufficient for

this. We resume the calculation (3) with all prior assumptions

™ 1 /! 1 g /11
§Bn = _FEQS (0) — 52/0 ¢" (x) cos(B,x)dx
1 //(0> 1 ///( ) . (6 )ﬂ—|— 1 /7"¢////( ) . (6 )d
=—— — —¢"(x) sin(Bx — x) sin(f,x)dx
i B o Balo
1 /! ]' u n 1 T /11 :
= 550" = 0" ()" + g [ 6" @) sin(Br)da
If we set ¢”(0) = 0 and require ¢ € C*[0, 7], then
c C 2
|Bn| <7< 40 C:7|¢///(W)|+2|M””|a TL:LQ,...,
n 7r

and S® (x,t) converges uniformly to continuous u,,(z,t) on Q.

Because u; = 2u,,, we also have uniform convergence of w;(x,t) to a continuous
function on (2.

In summary, if ¢(0) = 0, ¢'(7) = 2, ¢"(0) = 0, and ¢ € C*[0, 7] then u in Eq. (1)
is C?(Q) and is a classical solution to the initial, boundary value problem.



2. (Heat equation) Consider the following initial-boundary value problem for the heat
equation

Up = Ugy, z € (0,1), t>0,
uw(z,0) =xz(1l—xz), x€(0,1),
u(0,t) =u(l,t) =0, t>0.

Assume the existence of a classical solution u(x,t).

(a) Prove the uniqueness of this solution.
(b) Show that u(z,t) >0 on z € (0,1) and ¢ > 0.

(c) For each t > 0, let pu(t) := max,ep 1 u(x,t). Show that u(t) is a nonincreasing
function of ¢.

Solution:

(a) Assume two solutions v and v, then w = u — v solves the problem

Wy = Wy, z € (0,1), t>0,
w(zx,0) =0, z € (0,1),
w(0,t) =w(l,t) =0, t>0.

The maximum principle ensures maxg w(x,t) = 0 and the minimum principle
ensures ming w(z,t) = 0 for any rectangle R = [0,1] x [0,7]. Thus w = 0 on
any R, so u =v.

(b) By the minimum principle, we know ming u(z,t) = 0 for any rectangle R =
[0,1] x [0,T7], since u(0,t) = u(1l,t) = 0 < z(1 —z) for x € (0,1). By the
strong minimum principle, we know that if the minimum mingu(x,t) = 0 is
also obtained at a point (z*,t*) for 2* € (0,1) and ¢t € (0,7), then v =0 on R.
However, we know this cannot be since u(x,0) = (1 — z), so u(z,t) must only
obtain its minimum on z = 0 and =z = 1.

(c¢) By the maximum principle, u(1/2,0) = 1/4 = (0). At each t > 0, define X (¢)
such that p(t) = u(X(t),t). Differentiating, we find

(1) = (X (D), X (1) + us (X (1), 1)

At (X (1), 1), up(X(t),t) = 0 and uu, (X (¢),t) < 0. Thus, p/(t) = u.(X(¢),t) <
0, so p(t) is nonincreasing.

Alternatively, one could define for each ¢ty > 0 an initial boundary value problem
with u(z, o) as the initial condition, so that the maximum principle ensures the
maximum on [0, 1] x [tg, T] lies at to for any T' > to > 0. Thus, u(z,t) < u(x,ty)
for any t > to > 0, so p(t) is nonincreasing.



3. (Green’s function) Consider the boundary value problem

—Au(x) = f(x), x€QCR’

u(x) = g(x), x € N. (4)

(a) Formulate a boundary value problem for Green’s function G(x,y) = ®(x —y) —
¢”(y) for x € Q using the fundamental solution ®(x) = (4n|x|)~".

(b) Prove that Green’s function, if it exists, is unique.

(c¢) Construct Green’s function when
Q=DB(0,1)N {x = (71,79,73) €ER® | 23 > O},
where B(0,1) is the unit sphere.
Solution:
(a) Fix x € Q and let G(x,y) = ®(x —y) — ¢*(y). Then ¢ satisfies

Ay¢x(Y) = O, NS Q>
(y) =2(x—y), yeo

(b) Fix x €  and assume the existence of two Green’s functions G;(x,y) = m—i—

¢7(y) for j = 1,2 where each ¢7 satisfies

Ay¢f()’) =0, yeq,
Pi(y) =0(x~y), ye€o, j=12

Then u(y) = G1(x,y) — G2(x,y) is independent of x and satisfies

Ay“(Y) = 07 y € Q7
u(y) =0, ye€oQ,

i.e., v is harmonic in 2. By the maximum /minimum principles and the boundary
data, u(y) = 0 so that G1(x,y) = Ga(x,y) and Green’s function is unique.

(c¢) Fix x € Q and let G(x,y) = ®(x —y) — ¢“(y). First, we construct Green’s
function for the unit sphere B(0, 1) with the method of images. Let

Pp(y) = ®(x|(x-y)), x= —;.

Since X is not in B(0, 1), ¢%(y) is harmonic in B(0,1). Let |y| = 1, then we
compute

2

X

Il =) = | 7~ Ixly

=1—-2x-y+|x

=[x —yl~



Then, for y € 0B(0,1), we have

as required and Green’s function for the unit sphere is Gp(x,y) = ?(x —y) —
% (y). We now use the method of images again to obtain Green’s function for
the upper hemisphere €2 by reflecting about the plane x3 = 0. Let

G(X7 Y) - GB(X7 Y) - GB<)A(7Y>7 X = (fL’l, T, _:L'3)
—d(x—y) — (|x|(% — y)) - (% — y) + B(K|(X — )
=o(x—y) - ¢"(y)
Since X, X, and X are not in ©, ¢*(y) is harmonic for y € . We need to show

that ¢*(y) = ®(x—y) for y € 9Q. If |y| = 1 then as before, [x[|x —y| = [x —y]|.
Similarly, |X||% —y| = |X — y|. Then, for |y| =1 and y5 > 0,

¢"(y) = ®(x|(X —y)) + Dx —y) — D(|X|(X — y))
=0(x—y)+P(X-y) - PX-Yy)
=d(x —y),

as required. Finally, if y = (y1,¥2,0), y7 +y5 < 1, then |[x||x —y| = |§<H§< —y|
and |X —y| = |x — y| so that

and the construction is complete.



4. (Wave equation) Consider the wave equation

Uy = CPUyy, reR, t>0,

u(z,0) = ¢(x), =z €R, (5)
u(z,0) = ¢(x), =R,

Assume the existence of a classical solution u(z, ).
(a) If ¢(x) and ¢(x) are both odd functions of =, show that the solution wu(z,t) is

odd in z € R for ¢ > 0.
(b) Find a solution to Eq. (5) assuming ¢(x) = 0 and ¢ (x) = 0, and prove that it
is unique.

(c) Assume ¢

K(t) =3
K(t) =P

¢(z) and ¥ (z) have compact support fix ¢ = 1, and define the kinetic
Jg ue(z,t)?dz and potential P(t) = % [z u.(z, t)Qd:c energies. Show that
(t) for all ¢ sufficiently large.

2

Solution:

(a) By d’Alembert’s formula

u(—mz,t) = ; [p(—z + ct) + ¢(—x — ct)] + ;C/_;i:t@/)(s)ds
1 ]_ xr—ct
= 5 l=6(z —ct) = sla+et) - o L (s

= - @ [¢(z — ct) + ¢z + ct)] + - /Hd ) —u(z, 1)

(b) u =0 is a solution since u(x,0) =0 = ¢(x); u(2,0) =0 = Y(2); uy = 0 = Ugy.
Define the energy E(t) = % [y u(2,1)? + Puy(2,t)?dz = E, constant due to
conservation Thus, since E(0) = 1 [ ¢(2)? + ¢*p(z)’dz = 0 = E. Since
u?, u2 > 0, this implies u; = u, = 0, and since u(z,0) = 0, then u(x,t) = 0.

(¢) By d’Alembert’s formula

1 1 rztt
u(z,t) = 3 [p(x+1t)+p(x—t)]+ = 5 @/J(s)ds
wle,t) = 3 8@ +0) = ¢a — 0] + 5 [ + 1)+ (z — )
and

[$a+0) + 6w — 0]+ 5 [0+ 1) — vl 1)),

[\D\»—t

ug(z,t) =



Now, since both ¢ and 1 have compact support, for sufficiently large ¢, all terms

Oz/Rgb’(aH—t)qﬁ’(x—t)dx
E/Rgzs'(x+t)¢(x—t)dx
E/Rgb’(m—t)w(x—kt)dx
E/}R@b(m—t)w(w—i—t)dx.

That is, if ¢(x) is supported on x € [a,b] and (x) is supported on = € [m,n],
then once t > max(n —m,b—a,n—a,b—m)/2 = ty, the length 2¢ will be wider
than the region containing the support of both functions, so ¢'(x) and ¥ (x) must
be zero either at x +t or x — t. Thus, we compute

AL

$ x4+t + ¢ (x—1)*+2¢' (x + t)Y(x + )

—2¢'(x — )p(z — t) + Y(z + t)* + (z — t)*|da.

For any finite ¢t > ty, we can change variables of all terms z = x+tand z = x — ¢
and not change the integral, so

N= [[#Er+u6r]

Similarly,

P(t) = ; /R {gb'(x + 1)+ ¢ (x — t)* +2¢ (x + t)p(x + 1)
—2¢/(z — t)(z —t) + p(z +1)* + p(x — t)*|da.

and changing variables,

so K(t) = P(t) for t > t.



5. (Method of characteristics) Consider the quasilinear equation

(a)
(b)

(y + w)uy + yu, = — y.
Give an example of a connected curve I' C R? such that the Cauchy problem
with prescribed data on that curve cannot be solved.

Given the Cauchy data u(z,1) = 1 + 2. What are the characteristic curves?
Find the solution. For what values of (z,y) € R? does the solution exist?

Solution:

(a)

We require the data u(xo(s), yo(s)) = uo(s), s € I to lie on a characteristic, i.e.,
for the vector field v = (y+u, y) to be tangent to the initial curve. For example,
v is tangent to the curve I' = {(z,0) | x € R} for any choice of initial data.
Note that the zero Jacobian condition

e )

N _
= | yo(s) + uo(s) yols) | = Fo¥o ~ Yol +uo) =0 forall s €,

is necessary but not sufficient to prove that the problem cannot be solved.

We parametrize the data as © = s, y = 1, u = 1 4+ s for s € R. Then the
characteristic equations for z(¢, s), y(&, s), and u(¢, s) are

ye =1y, y(0,s)=

re=y+u, z(0,s)=s,
ue=z—y, u(0,s)=14+s, seR.

Taking another derivative of the first equation, we obtain

Tee = Ye + Ug
=y+zrT—y

= I‘7
which has solution z = A(s)e® + B(s)e™*. The initial data imply x(0,s) =
A(s) + B(s) = s and 2¢(0,s) = A(s) — B(s) = y(0,s) + u(0,s) = 2+ s. Then
A(s) =1+ s and B(s) = —1 so that
z(€,5) = (1+s)e* —e s,
The equation for y is solved

y(€,s) = €.

Then the characteristic curves are

1
z=(1+s)y—-



for each s € R. We solve the equation for u

ue = st —e = w(,s) =set +e b

Undoing the characteristic transformation, we obtain the solution
2
U(.T,y>:$—y+§7 IERu y%oa

which exists for y # 0.



