
Preliminary Examination (Solutions): Partial Differential
Equations,
10 AM - 1 PM, Jan. 18, 2016,
Room Discovery Learning Center (DLC) Bechtel Collab-
oratory.

Student ID:

There are five problems. Solve four of the five problems.
Each problem is worth 25 points. A sheet of convenient formulae
is provided.

# possible score
1 25
2 25
3 25
4 25
5 25

Total 100

1. (Solution methods) Let Ω = (0, π)× (0, T ), T > 0. Consider the initial, boundary
value problem

ut = 2uxx, 0 < x < π, t > 0
ux(π, t) = 2, u(0, t) = 0, t > 0,

u(x, 0) = φ(x), 0 < x < π.

(a) Find a formal solution u(x, t) that solves the above initial value problem.
(b) Find sufficient conditions on φ such that the formal solution u is classical, i.e.,

it is in C2
1(Ω̄), functions that are twice continuously differentiable for x ∈ [0, π]

and continuously differentiable for t ∈ [0, T ]. For full credit, you must provide a
complete proof of your conclusion.

Solution:
We first need to shift the boundary condition and let v = u− 2x to obtain

v(0, t) = 0
vx(π, t) = 0
v(x, 0) = φ(x)− 2x .

We then use separation of variables v(x, t) = X(x)T (t) to obtain

XT ′ = 2X ′′T
X ′′

X
= T ′

2T = −λ .

Thus we have an equation for X and an equation for T .

(a) Find the formal solution



i. For the X equation
X ′′ = λX

we have that X(x) = A cos βx+B sin βx (with λ = β2 ) and the boundary
conditions give us

X(0) = 0→ A = 0

and
X ′(π) = 0 = Bβ cos βπ → βn = n+ 1

2 , n = 0, 1, . . . .

These results mean

Xn(x) = Bn sin((n+ 1/2)x), n = 0, 1, . . . .

ii. For the T equation, we have that

T ′ = −2λT

which has solution T (t) = Ce−2λt.
iii. Therefore we obtain the formal series solution

v(x, t) =
∞∑
n=0

Bn sin(βnx)e−2β2
nt

iv. By equating this series to the initial data

v(x, 0) = φ(x)− 2x =
∞∑
n=0

Bn sin βnx

we have that
Bn = 2

π

∫ π

0
sin(βnx) (φ(x)− 2x) dx.

Thus the formal solution is

u(x, t) =
∞∑
n=0

Bn sin(βnx)e−2β2
nt + 2x . (1)

(b) For the above formal solution to be classical, it is sufficient that φ(0) = 0,
φ′(π) = 2, φ′′(0) = 0, and φ ∈ C4[0, π].

Convergence of u(x, t): To illustrate the source of these restrictions, first
consider the formal series for u(x, t) in Eq. (1). We require this series to be
uniformly convergent for (x, t) ∈ Ω and the initial/boundary data to be satis-
fied. For uniform convergence, we invoke the Weierstrass M -test: ∑n an(x, t) is
uniformly convergent if |an(x, t)| < Mn for (x, t) ∈ Ω and ∑nMn < ∞. Since



|Bn sin(βnx)e−2β2
nt| ≤ |Bn|, we require

∑∞
n=0 |Bn| <∞. A sufficient condition for

this inequality to hold is |Bn| < Cn/n
2 for n = 1, 2, . . .. We formally compute

π

2Bn =
∫ π

0
(φ(x)− 2x) sin(βnx)dx

= − 1
βn

(φ(x)− 2x) cos(βnx)
∣∣∣∣∣
π

0
+ 1
βn

∫ π

0
(φ′(x)− 2) cos(βnx)dx

= 1
βn
φ(0) + 1

βn

∫ π

0
(φ′(x)− 2) cos(βnx)dx

= 1
βn
φ(0) + 1

β2
n

(φ′(x)− 2) sin(βnx)
∣∣∣∣∣
π

0
− 1
β2
n

∫ π

0
φ′′(x) sin(βnx)dx

= 1
βn
φ(0) + 1

β2
n

(φ′(π)− 2)(−1)n − 1
β2
n

∫ π

0
φ′′(x) sin(βnx)dx

(2)

If we set φ(0) = 0 and require φ ∈ C2[0, π], then we can uniformly bound the
final integrand |φ′′(x) sin(βnx)| < M ′′ <∞ and obtain

|Bn| <
C

β2
n

<
C

n2 , C = 2
π

(|φ′(π)|+ 2) + 2M ′′, n = 1, 2, . . . ,

as needed.

Convergence to initial data: Because φ ∈ C2[0, π] and φ(0) = 0, φ has a
smooth, odd, periodic extension to [−2π, 2π]. Then the Fourier quarter-sine se-
ries for φ, u(x, 0)−2x, is guaranteed to converge uniformly to φ(x) for x ∈ [0, π]
by Dirichlet’s theorem.

Convergence to boundary data: Since each term in the uniformly convergent
series (1) evaluates to zero at x = 0, we have u(0, t) = 0. We check the other
boundary condition next. Consider ux. In order to be able to differentiate the
series (1) term-by-term, we require each differentiated term to be a) uniformly
continuous and b) for the differentiated series

S(1)(x, t) =
∞∑
n=0

βnBn cos(βnx)e−2β2
nt

to be absolutely summable. If these are both true, then S(x, t) converges uni-
formly to the continuous function ux(x, t) for (x, t) ∈ Ω.
The first requirement is satisfied because cos(βnx)e−2β2

nt is continuous for all
(x, t). Since the domain Ω is compact, each term is uniformly continuous.
|βnBn| < C/n2 or |Bn| < C/n3, n = 1, 2, . . . is a sufficient condition for ab-
solute summability by the M -test. To obtain sufficient conditions, we resume



the calculation in Eq. (2), imposing the already specified assumptions

π

2Bn = 1
β2
n

(φ′(π)− 2)(−1)n − 1
β2
n

∫ π

0
φ′′(x) sin(βnx)dx

= 1
β2
n

(φ′(π)− 2)(−1)n + 1
β3
n

cos(βnx)φ′′(x)
∣∣∣∣∣
π

0
− 1
β3
n

∫ π

0
φ′′′(x) cos(βnx)dx

= 1
β2
n

(φ′(π)− 2)(−1)n − 1
β3
n

φ′′(0)− 1
β3
n

∫ π

0
φ′′′(x) cos(βnx)dx.

(3)

If we set φ′(π) = 2 and require φ ∈ C3[0, π], then we can bound the final
integrand |φ′′′(x) cos(βnx)| < M ′′′ <∞ and obtain

|Bn| <
C

β3
n

<
C

n3 , C = 2
π
|φ′′(0)|+ 2M ′′′, n = 1, 2, . . . .

Therefore S(1)(x, t) converges uniformly to ux(x, t) − 2 for (x, t) ∈ Ω. We can
therefore evaluate the series ux(π, t) = S(1)(π, t) + 2 = 2 as required.

Convergence of uxx and ut: The final step is to prove uniform convergence of
the series

S(2)(x, t) = −
∞∑
n=0

β2
nBn sin(βnx)e−2β2

nt.

By similar arguments as given earlier, |Bn| < C/n4, n = 1, 2, . . . is sufficient for
this. We resume the calculation (3) with all prior assumptions

π

2Bn = − 1
β3
n

φ′′(0)− 1
β3
n

∫ π

0
φ′′′(x) cos(βnx)dx

= − 1
β3
n

φ′′(0)− 1
β4
n

φ′′′(x) sin(βnx)
∣∣∣∣∣
π

0
+ 1
β4
n

∫ π

0
φ′′′′(x) sin(βnx)dx

= − 1
β3
n

φ′′(0)− 1
β4
n

φ′′′(π)(−1)n + 1
β4
n

∫ π

0
φ′′′′(x) sin(βnx)dx.

If we set φ′′(0) = 0 and require φ ∈ C4[0, π], then

|Bn| <
C

β4
n

<
C

n4 , C = 2
π
|φ′′′(π)|+ 2|M ′′′′|, n = 1, 2, . . . ,

and S(2)(x, t) converges uniformly to continuous uxx(x, t) on Ω.
Because ut = 2uxx, we also have uniform convergence of ut(x, t) to a continuous
function on Ω.

In summary, if φ(0) = 0, φ′(π) = 2, φ′′(0) = 0, and φ ∈ C4[0, π] then u in Eq. (1)
is C2

1(Ω) and is a classical solution to the initial, boundary value problem.



2. (Heat equation) Consider the following initial-boundary value problem for the heat
equation 

ut = uxx, x ∈ (0, 1), t > 0,
u(x, 0) = x(1− x), x ∈ (0, 1),
u(0, t) = u(1, t) = 0, t > 0.

Assume the existence of a classical solution u(x, t).

(a) Prove the uniqueness of this solution.
(b) Show that u(x, t) > 0 on x ∈ (0, 1) and t > 0.
(c) For each t > 0, let µ(t) := maxx∈[0,1] u(x, t). Show that µ(t) is a nonincreasing

function of t.

Solution:

(a) Assume two solutions u and v, then w = u− v solves the problem
wt = wxx, x ∈ (0, 1), t > 0,
w(x, 0) = 0, x ∈ (0, 1),
w(0, t) = w(1, t) = 0, t > 0.

The maximum principle ensures maxR w(x, t) = 0 and the minimum principle
ensures minR w(x, t) = 0 for any rectangle R = [0, 1] × [0, T ]. Thus w ≡ 0 on
any R, so u ≡ v.

(b) By the minimum principle, we know minR u(x, t) = 0 for any rectangle R =
[0, 1] × [0, T ], since u(0, t) = u(1, t) = 0 < x(1 − x) for x ∈ (0, 1). By the
strong minimum principle, we know that if the minimum minR u(x, t) = 0 is
also obtained at a point (x∗, t∗) for x∗ ∈ (0, 1) and t ∈ (0, T ), then u ≡ 0 on R.
However, we know this cannot be since u(x, 0) = x(1− x), so u(x, t) must only
obtain its minimum on x = 0 and x = 1.

(c) By the maximum principle, u(1/2, 0) = 1/4 = µ(0). At each t > 0, define X(t)
such that µ(t) = u(X(t), t). Differentiating, we find

µ′(t) = ux(X(t), t)X ′(t) + ut(X(t), t).

At (X(t), t), ux(X(t), t) = 0 and uxx(X(t), t) ≤ 0. Thus, µ′(t) = uxx(X(t), t) ≤
0, so µ(t) is nonincreasing.
Alternatively, one could define for each t0 > 0 an initial boundary value problem
with u(x, t0) as the initial condition, so that the maximum principle ensures the
maximum on [0, 1]× [t0, T ] lies at t0 for any T > t0 > 0. Thus, u(x, t) ≤ u(x, t0)
for any t > t0 > 0, so µ(t) is nonincreasing.



3. (Green’s function) Consider the boundary value problem

−∆u(x) = f(x), x ∈ Ω ⊂ R3,

u(x) = g(x), x ∈ ∂Ω.
(4)

(a) Formulate a boundary value problem for Green’s function G(x,y) = Φ(x−y)−
φx(y) for x ∈ Ω using the fundamental solution Φ(x) = (4π|x|)−1.

(b) Prove that Green’s function, if it exists, is unique.
(c) Construct Green’s function when

Ω = B(0, 1) ∩
{
x = (x1, x2, x3) ∈ R3 | x3 > 0

}
,

where B(0, 1) is the unit sphere.

Solution:

(a) Fix x ∈ Ω and let G(x,y) = Φ(x− y)− φx(y). Then φx satisfies

∆yφ
x(y) = 0, y ∈ Ω,
φx(y) = Φ(x− y), y ∈ ∂Ω.

(b) Fix x ∈ Ω and assume the existence of two Green’s functionsGj(x,y) = 1
4π|x−y|+

φxj (y) for j = 1, 2 where each φxj satisfies

∆yφ
x
j (y) = 0, y ∈ Ω,
φxj (y) = Φ(x− y), y ∈ ∂Ω, j = 1, 2.

Then u(y) = G1(x,y)−G2(x,y) is independent of x and satisfies

∆yu(y) = 0, y ∈ Ω,
u(y) = 0, y ∈ ∂Ω,

i.e., u is harmonic in Ω. By the maximum/minimum principles and the boundary
data, u(y) ≡ 0 so that G1(x,y) = G2(x,y) and Green’s function is unique.

(c) Fix x ∈ Ω and let G(x,y) = Φ(x − y) − φx(y). First, we construct Green’s
function for the unit sphere B(0, 1) with the method of images. Let

φxB(y) = Φ(|x|(x̃− y)), x̃ = x
|x|2

.

Since x̃ is not in B(0, 1), φxB(y) is harmonic in B(0, 1). Let |y| = 1, then we
compute

||x|(x̃− y)|2 =
∣∣∣∣∣ x
|x|
− |x|y

∣∣∣∣∣
2

= 1− 2x · y + |x|2

= |x− y|2.



Then, for y ∈ ∂B(0, 1), we have

φxB(y) = Φ(|x|(x̃− y))
= Φ(x− y),

as required and Green’s function for the unit sphere is GB(x,y) = Φ(x − y) −
φxB(y). We now use the method of images again to obtain Green’s function for
the upper hemisphere Ω by reflecting about the plane x3 = 0. Let

G(x,y) = GB(x,y)−GB(x̂,y), x̂ = (x1, x2,−x3)
= Φ(x− y)− Φ(|x|(x̃− y))− Φ(x̂− y) + Φ(|x̂|(˜̂x− y))
= Φ(x− y)− φx(y).

Since x̃, x̂, and ˜̂x are not in Ω, φx(y) is harmonic for y ∈ Ω. We need to show
that φx(y) = Φ(x−y) for y ∈ ∂Ω. If |y| = 1 then as before, |x||x̃−y| = |x−y|.
Similarly, |x̂||˜̂x− y| = |x̂− y|. Then, for |y| = 1 and y3 ≥ 0,

φx(y) = Φ(|x|(x̃− y)) + Φ(x̂− y)− Φ(|x̂|(˜̂x− y))
= Φ(x− y) + Φ(x̂− y)− Φ(x̂− y)
= Φ(x− y),

as required. Finally, if y = (y1, y2, 0), y2
1 + y2

2 ≤ 1, then |x||x̃ − y| = |x̂||˜̂x − y|
and |x̂− y| = |x− y| so that

φx(y) = Φ(|x|(x̃− y)) + Φ(x̂− y)− Φ(|x̂|(˜̂x− y))
= Φ(|x̂|(˜̂x− y)) + Φ(x− y)− Φ(x̂− y)
= Φ(x− y),

and the construction is complete.



4. (Wave equation) Consider the wave equation
utt = c2uxx, x ∈ R, t > 0,
u(x, 0) = φ(x), x ∈ R,
ut(x, 0) = ψ(x), x ∈ R.

(5)

Assume the existence of a classical solution u(x, t).

(a) If φ(x) and ψ(x) are both odd functions of x, show that the solution u(x, t) is
odd in x ∈ R for t > 0.

(b) Find a solution to Eq. (5) assuming φ(x) ≡ 0 and ψ(x) ≡ 0, and prove that it
is unique.

(c) Assume φ(x) and ψ(x) have compact support, fix c = 1, and define the kinetic
K(t) = 1

2
∫
R ut(x, t)2dx and potential P (t) = 1

2
∫
R ux(x, t)2dx energies. Show that

K(t) = P (t) for all t sufficiently large.

Solution:

(a) By d’Alembert’s formula

u(−x, t) = 1
2 [φ(−x+ ct) + φ(−x− ct)] + 1

2c

∫ −x+ct

−x−ct
ψ(s)ds

= 1
2 [−φ(x− ct)− φ(x+ ct)]− 1

2c

∫ x−ct

x+ct
ψ(−s)ds

= −
(1

2 [φ(x− ct) + φ(x+ ct)] + 1
2c

∫ x+ct

x−ct
ψ(s)ds

)
= −u(x, t)

(b) u ≡ 0 is a solution since u(x, 0) ≡ 0 ≡ φ(x); ut(x, 0) ≡ 0 ≡ ψ(x); utt = 0 = uxx.
Define the energy E(t) = 1

2
∫
R ut(x, t)2 + c2ux(x, t)2dx = Ē, constant due to

conservation. Thus, since E(0) = 1
2
∫
R φ(x)2 + c2ψ(x)2dx = 0 = Ē. Since

u2
t , u

2
x ≥ 0, this implies ut ≡ ux ≡ 0, and since u(x, 0) ≡ 0, then u(x, t) ≡ 0.

(c) By d’Alembert’s formula

u(x, t) = 1
2 [φ(x+ t) + φ(x− t)] + 1

2

∫ x+t

x−t
ψ(s)ds

so

ut(x, t) = 1
2 [φ′(x+ t)− φ′(x− t)] + 1

2 [ψ(x+ t) + ψ(x− t)]

and

ux(x, t) = 1
2 [φ′(x+ t) + φ′(x− t)] + 1

2 [ψ(x+ t)− ψ(x− t)] .



Now, since both φ and ψ have compact support, for sufficiently large t, all terms

0 =
∫
R
φ′(x+ t)φ′(x− t)dx

≡
∫
R
φ′(x+ t)ψ(x− t)dx

≡
∫
R
φ′(x− t)ψ(x+ t)dx

≡
∫
R
ψ(x− t)ψ(x+ t)dx.

That is, if φ(x) is supported on x ∈ [a, b] and ψ(x) is supported on x ∈ [m,n],
then once t > max(n−m, b− a, n− a, b−m)/2 = t0, the length 2t will be wider
than the region containing the support of both functions, so φ′(x) and ψ(x) must
be zero either at x+ t or x− t. Thus, we compute

K(t) = 1
8

∫
R

[
φ′(x+ t)2 + φ′(x− t)2 + 2φ′(x+ t)ψ(x+ t)

− 2φ′(x− t)ψ(x− t) + ψ(x+ t)2 + ψ(x− t)2
]
dx.

For any finite t > t0, we can change variables of all terms z = x+ t and z = x− t
and not change the integral, so

K(t) = 1
4

∫
R

[
φ′(z)2 + ψ(z)2

]
dz.

Similarly,

P (t) = 1
8

∫
R

[
φ′(x+ t)2 + φ′(x− t)2 + 2φ′(x+ t)ψ(x+ t)

− 2φ′(x− t)ψ(x− t) + ψ(x+ t)2 + ψ(x− t)2
]
dx.

and changing variables,

P (t) = 1
4

∫
R

[
φ′(z)2 + ψ(z)2

]
dz,

so K(t) = P (t) for t > t0.



5. (Method of characteristics) Consider the quasilinear equation

(y + u)ux + yuy = x− y.

(a) Give an example of a connected curve Γ ⊂ R2 such that the Cauchy problem
with prescribed data on that curve cannot be solved.

(b) Given the Cauchy data u(x, 1) = 1 + x. What are the characteristic curves?
Find the solution. For what values of (x, y) ∈ R2 does the solution exist?

Solution:

(a) We require the data u(x0(s), y0(s)) = u0(s), s ∈ I to lie on a characteristic, i.e.,
for the vector field v = (y+u, y) to be tangent to the initial curve. For example,
v is tangent to the curve Γ = {(x, 0) | x ∈ R} for any choice of initial data.
Note that the zero Jacobian condition

J =
∣∣∣∣∣ x′0(s) y′0(s)
y0(s) + u0(s) y0(s)

∣∣∣∣∣ = x′0y0 − y′0(y0 + u0) = 0 for all s ∈ I,

is necessary but not sufficient to prove that the problem cannot be solved.
(b) We parametrize the data as x = s, y = 1, u = 1 + s for s ∈ R. Then the

characteristic equations for x(ξ, s), y(ξ, s), and u(ξ, s) are

xξ = y + u, x(0, s) = s,

yξ = y, y(0, s) = 1,
uξ = x− y, u(0, s) = 1 + s, s ∈ R.

Taking another derivative of the first equation, we obtain

xξξ = yξ + uξ

= y + x− y
= x,

which has solution x = A(s)eξ + B(s)e−ξ. The initial data imply x(0, s) =
A(s) + B(s) = s and xξ(0, s) = A(s) − B(s) = y(0, s) + u(0, s) = 2 + s. Then
A(s) = 1 + s and B(s) = −1 so that

x(ξ, s) = (1 + s)eξ − e−ξ.

The equation for y is solved

y(ξ, s) = eξ.

Then the characteristic curves are

x = (1 + s)y − 1
y



for each s ∈ R. We solve the equation for u

uξ = seξ − e−ξ ⇒ u(ξ, s) = seξ + e−ξ.

Undoing the characteristic transformation, we obtain the solution

u(x, y) = x− y + 2
y
, x ∈ R, y 6= 0,

which exists for y 6= 0.


