
PDE Preliminary Examination: 1/14/2015
Name:
There are 5 problems, each worth 25 points. You are required to do
4 of them. Indicate in the table which 4 you choose–Note: Only 4
problems will be graded. A sheet of convenient formulae is provided.

# Choice (X) score
1
2
3
4
5

Total

1. Heat Equation
Let Q = (0, π) × (0, T ) and Q the closure of this domain. Suppose that u(x, t) ∈
C2(Q)× C0(Q) is a solution to:

ut(x, t) = uxx(x, t) + F (x, t), (x, t) ∈ Q,
u(0, t) = g(t), u(π, t) = 0, t > 0,
u(x, 0) = f(x), 0 ≤ x ≤ π.

(1)

(a) Let M = max{0, g(t), f(x)|(x, t) ∈ Q}, N = max{0, F (x, t)|(x, t) ∈ Q}, show
that u(x, t) ≤M + tN . (State clearly the theorems that you are using).

(b) Let g ≡ 0 and F ≡ 0. It is known that when f ′(x) and f(x) are continuous
on [0, π] with f(0) = f(π) = 0, the above equation has a classical solution (a
solution u(x, t) ∈ C2(Q) × C0(Q)). Show the existence and uniqueness of a
classical solution when f is continuous and f(0) = f(π) = 0.

Solution a) Notice that N ≥ 0. Let w = u−(M+Nt). Then wt−wxx = F (x, t)−N ≤
0, and w(0, t) = u(0, t) − M − Nt ≤ u(0, t) − M ≤ 0, w(L, t) ≤ 0 likewise, also
w(x, 0) ≤ 0.
By the maximum principle, w(x, t) ≤ 0, or equivalently, u(x, t) ≤M + tN .

b) It is clear from the formal solution u(x, t) (via separation of variables) that we get
a smooth solution for t > 0. The key is to prove that this solution can be continuously
extend to t = 0.
For this purpose, we take a sequence of functions fn(x) ∈ C1[0, π] with fn(0) = fn(L) =
0 that converge uniformly to f(x). Then the corresponding formal solution un(x, t) is
in C2(Q)× C0(Q). By (a), we can get:

||un − um||C0(Q) ≤ ||fn − fm||C0[0,π] , εn,m → 0

as n,m→∞. Thus, ∃u ∈ C0(Q) such that un converges uniformly to u on Q.
Clearly, by the bounded convergence theorem, u = u for t > 0. In other words, the
solution u(x, t), originally defined for t > 0 can be continuously extended to t = 0 with
u(x, 0) , limt→0+ u(x, t) = limt→0+ u(x, t) = u(x, 0) = f(x).



2. Fourier Series

(a) Prove the Weierstrass approximation theorem: let f(x) be a 2π-periodic, contin-
uous function, then ∀ε > 0, there exists a trigonometric polynomial T (x), such
that |f(x) − T (x)| ≤ ε, ∀x ∈ R. (hint: construct a suitable reproducing ker-
nel/approximation of identity).

(b) Prove Parseval’s identity: if f(x) is a 2π-periodic, continuous function and

f(x) = a0

2 +
∞∑
n=1

an cosnx+ bn sinnx

is its Fourier Series, then:
∫ π

−π
f 2(x)dx = π

a2
0

2 + π
∞∑
n=1

(a2
n + b2

n).

Solution

Solution for part (a). Step 1 ϕn(u) = cn cos2n u
2 where cn =

(∫ π
−π cos2n u

2du
)−1

is
an approximate identity on [−π, π], and it is a trigonometric polynomial of degree
n in u.

Proof. We must show that ϕn is trigonometric polynomial and an approximate
identity.
(a) Writing ϕn(u) = cn

22n (e iu2 + e
−iu

2 )2n with c−1
n =

∫ π
−π cos2n u

2du

(b) To show that ϕn is an approximate identity, we must verify the three prop-
erties of an approximate identity:
i.) ϕn(u) ≥ 0 since cos u

2 ≥ 0 for |u| ≤ π.
ii.) ∫ π

−π
ϕn(u)du =

∫ π
−π cos2n u

2du∫ π
−π cos2n u

2du
= 1

iii.) ϕn(u) is ‘smooth’ (C∞ in fact), and ∀δ > 0

0 ≤ lim
n→∞

∫
|u|≥δ

ϕn(u)du ≤ lim
n→∞

∫
|u|≥δ cos2n u

2du∫
|u|≤ δ2

cos2n u
2du
≤ lim

n→∞

2π
δ

(
cos δ

2
cos δ

4

)2n

= 0

Thus limn→∞
∫
|u|≥δ ϕn(u) = 0 by the squeeze theorem.

Step 2: Tn(x) =
∫ π
−π f(x+u)ϕn(u)du is a trigonometric polynomial of degree at most

n, such that
an = max |Tn(x)− f(x)| → 0



(i)

Tn(x) =
∫ π

−π
f(x+ u)ϕn(u)du

=
∫ π+x

−π+x
f(ω)ϕn(ω − x)dω

=
∫ π

−π
f(ω)ϕn(ω − x)dω

since both f(ω) and ϕn(ω) are 2π-periodic. ϕn(ω − x) is a trigonometric
polynomial of degree n in ω−x and by the difference angle theorem of cosine
and sine, we have ϕn(ω − x) is a trigonometric polynomial of degree ≤ n in
x with coefficients as functions in ω. Thus Tn(x) =

∫ π
−π f(ω)ϕn(ω − x)dx is

trigonometric polynomial of degree ≤ n in x.
(ii) By the theorem of approximate identity, Tn(x) converges to f(x) uniformly,

or, ∀ε > 0 ∃N , such that

|f(x)− Tn(x)| ≤ ε ∀x ∈ R

Solution for part (b). Let

Sn(x) = a0

2 +
n∑
k=1

(ak cos kx+ bk sin kx)

then by the definition of a0, ak, and bk, we know Sn is the projection of f(x) into

Hn = span{1, cos kx, sin kx}nk=1

in the Hilbert space L2(−π, π). Thus for any trigonometric polynomial T (x) of degree
≤ n (or equivalently, T (x) ∈ Hn), we must have

||f(x)− Sn(x)||L2 ≤ ||f(x)− T (x)||

Step 1 limn→∞ ||f(x)−Sn(x)||L2 = 0 via Weierstrass. For all ε > 0, ∃T (x), a trigono-
metric polynomial, such that

|f(x)− T (x)| ≤ ε√
2π

which implies
∫ π

−π
|f(x)− T (x)|2dx ≤ ε2

2π

∫ π

−π
dx

= ε2



and thus
||f(x)− T (x)||L2 ≤ ε

Let N = deg(T (x)), then for any n ≥ N , T (x) ∈ Hn implies

||f(x)− Sn(x)||L2 ≤ ||f(x)− T (x)||
≤ ε

or
lim
n→∞

||f(x)− Sn(x)||L2 = 0

Step 2 ∫ π

−π
f 2(x)dx = a2

0
2 π + π

∞∑
n=1

(a2 + b2)

Using the fact that ∫ π

−π
cos2 nxdx =

∫ π

−π
sin2 nxdx = π

and the orthogonality, we see

||Sn||2L2 =
∫ π

−π
S2
n(x)dx = a2

0
2 π + π

N∑
n=1

(a2 + b2)

Thus from step 1, ∫ π

−π
f 2(x)dx = ||f ||2L2 = lim

n→∞
||Sn||2L2

= a2
0

2 π + lim
N→∞

π
N∑
n=1

(a2 + b2)

= a2
0

2 π + π
∞∑
n=1

(a2 + b2)

3. Method of Characteristics. The nonlinear PDE

vttv
2
x − 2vxtvtvx + v2

t vxx = 0 (2)

is a special case of the so-called Monge-Ampère equation. In this problem, you will
reduce this system to an equivalent first order equation and then solve it.



(a) Show that (2) is equivalent to:

vtt
vx
− vtvxt

v2
x

= vt
vx

{
vxt
vx
− vtvxx

v2
x

}
(3)

Then show that (3) can be written as an equivalent first order PDE for the new
function u = vt/vx. [Hint: we ordered the terms in (3) for a reason!]

(b) For the given initial conditions

v(x, 0) = 1 + 2e3x

vt(x, 0) = 4e3x

on −∞ < x <∞, find u(x, t) for t > 0 and then find v(x, t) for t > 0.

Solution (a) It is straightforward to divide by v3
x and rearrange to get the result (3).

Substitution for u = vt/vx then gives

ut − uux = 0

(b) For the given initial/boundary conditions on v, we have

u0(x) = u(x, 0) = vt(x, 0)
vx(x, 0) = 4e3x

2 · 3e3x = 2
3

To solve by the MoC, we write U(t;x0) = u(X(t;x0), t), and then solve

dX

dt
= −U

dU

dt
= 0

subject to U(0;x0) = u0(x0) and X(0;x0) = x0. This gives U(t;x0) = u0(x0), and
X(t;x0) = −u0(x0)t+ x0, which gives a formal solution to the PDE

u(x, t) = u0 (x+ u0(x0(t;x))dt) ,

though we would have to invert x(t;x0) to find x0(t;x). However, since u0 = 2
3 , this

simply gives u(x, t) = 2
3 too.

To solve for v, we must solve the PDE

vt − uvx = vt − 2
3vx = 0

This also easy, since it is now linear with constant coefficients, v(x, t) = v0(x+ 2
3t), so

since v0(x) = v(x, 0) we have

v(x, t) = 1 + 2e3x+2t

Note that vt(x, 0) = 4e3x, as required. We check by substitution back into (2); this
gives an identity.



4. Wave equation

(a) Let u be a classical solution of utt = c2uxx (c > 0) on R× (0,∞) and define

Ex,t(s) = 1
2

∫ x+c(t−s)

x−c(t−s)
[ u2

s(y, s) + c2u2
y(y, s)]dy

for x ∈ R and t ≥ s > 0. Show that d
ds
Ex,t(s) ≤ 0 for s ∈ (0, t).

(b) For the classical solution in (a), let E(s) = 1
2
∫∞
−∞[u2

s(y, s) + c2u2
y(y, s)]dy. Show

that E(s) is monotone non-increasing, and in particular, if E(s0) is finite then
show that E(s) is finite for all s > s0.

(c) Apply the ‘energy inequality’ from (a) to show that there is at most one classical
solution to the initial value problem:

utt(x, t) = c2uxx(x, t) + F (x, t), x ∈ R, t > 0,
u(x, 0) = f(x),
ut(x, 0) = g(x),

with c > 0, such that u(x, t) ∈ C1(R× [0,∞)) ∩ C2(R× (0,∞)).

Solution for part (a).

d
ds
Ex,t(s) = −c[1

2u
2
s(x+ c(t− s)), s) + 1

2c
2u2

y(x+ c(t− s), s)]
−c[1

2u
2
s(x− c(t− s)), s) + 1

2c
2u2

y(x− c(t− s), s)]
+
∫ x+c(t−s)
x−c(t−s) [us(y, s)uss(y, s) + c2uy(y, s)uys(y, s)]dy

= −c[1
2u

2
s(x+ c(t− s)), s) + 1

2c
2u2

y(x+ c(t− s), s)]
−c[1

2u
2
s(x− c(t− s)), s) + 1

2c
2u2

y(x− c(t− s), s)]
+c2uy(x+ c(t− s), s)us(x+ c(t− s), s)
−c2uy(x− c(t− s), s)us(x− c(t− s), s)
+
∫ x+c(t−s)
x−c(t−s) [us(y, s)uss(y, s)− c2us(y, s)uyy(y, s)]dy

= − c
2 [us(x+ c(t− s)), s)− cuy(x+ c(t− s), s)]2
− c

2 [us(x− c(t− s)), s) + cuy(x− c(t− s), s)]2
≤ 0

�

Solution for part (b). First, since the integrand does not change sign, for fixed
s and any given x, we see that limt→+∞Ex,t(s) = limt→+∞

1
2
∫ x+c(t−s)
x−c(t−s) [ u2

s(y, s) +
c2u2

y(y, s)]dy = 1
2
∫∞
−∞[u2

s(y, s) + c2u2
y(y, s)]dy , E(s).



Thus for 0 ≤ s1 < s2 we haveE(s2) = limt→+∞E0,t(s2) = limt→+∞
1
2
∫ c(t−s2)
−c(t−s2)[ u2

s(y, s2)+
c2u2

y(y, s2)]dy ≤ limt→+∞
1
2
∫ c(t−s1)
−c(t−s1)[ u2

s(y, s1) + c2u2
y(y, s1)]dy = E(s1). Here we have

pick x = 0.
In short, E(s2) ≤ E(s1) for s1 < s2 or E(s) is monotone non-increasing and conse-
quently if E(0) is finite then E(s) is also finite for all s ≥ 0.

Solution for part (c). Suppose u1, u2 are two solutions. Let u = u1− u2. Note that
this solves the homogeneous problem, with F = f = g = 0. By part (a), Ex,t(s) ≤
Ex,t(0) = 0. So, since both terms in the integrand are non-negative,∫ x+ct

x−ct
u2
s(y, s)dy = 0.

Since us(y, s) is continuous, we have us(y, s) = 0 for y ∈ (x−ct, x+ct), 0 < s ≤ t. Now,
let t → ∞, and we have us(y, s) ≡ 0 for y ∈ (−∞,∞) and s > 0. Since u(y, 0) = 0,
we get u(y, s) ≡ 0.

5. Poisson’s Equation
Let B = {(r, θ) | 0 ≤ r < a, 0 ≤ θ < 2π} ∈ R2 for a > 0, be the open disk of radius a
centered at the origin, with polar coordinates (r, θ). Consider the problem

∆u = F (r, θ), (r, θ) ∈ B,
u(a, θ) = f(θ). (4)

(a) Find a formal solution u(r, θ) that ‘solves’ (4) for F ≡ 0.
(b) Find conditions on f that assure the formal solution u obtained in part (a) is in

C0(B). Give a proof of your conclusion.
(c) State and prove a version of the maximum principle (stability estimate) for (4).

Apply it to prove that (4) admits at most one classical solution u ∈ C0(B)∩C2(B)
for given functions F and f .

Solution for part (a). :
The formal solution is given by (you can derive this either by separation of variables
or using the analytic functions zn):
u(r, θ) = a0

2 +∑∞
n=1(an cosnθ + bn sinnθ)( r

a
)n, with

an = 1
π

∫ 2π
0 cos(nθ)f(θ)dθ and bn = 1

π

∫ 2π
0 sin(nθ)f(θ)dθ for n = 0, 1, 2, 3, · · · .



Solution for part (b). The formal solution is in C0(B) if f is in C1[0, 2π] with f(0) =
f(2π).
In fact, let f ′(θ) = α0

2 +∑∞
n=1(αn cosnθ + βn sinnθ).

Then by Parseval’s identity, we have ∑∞n=1(α2
n + β2

n) <∞.
Applying the integration by parts, and using the fact that f(0) = f(2π), we derive:
an = −βn

n
and bn = αn

n
. Thus, each term in our formal solution satisfies:

|(an cosnθ + bn sinnθ)(r
a

)n| ≤ |βn|+ |αn|
n

To show that the formal series solution give a continuous function for r ≤ a, we only
need to check that the dominating convergence theorem can be applied here for uniform
convergence:
We only need: ∑∞

n=1
|βn|+|αn|

n
< ∞. This can be obtain via Schwartz inequality:∑∞

n=1
|βn|+|αn|

n
≤ (∑∞n=1 |βn|2) 1

2 (∑∞n=1
1
n2 ) 1

2 + (∑∞n=1 |αn|2) 1
2 (∑∞n=1

1
n2 ) 1

2 <∞.
The proof is completed.

Solution for part (c). Statement of a MP:
Assume that u ∈ C2(B)⋂C(B̄) and 4u = F in B, then |u(x)| ≤ N + a2

4 M where
M = max

B̄
|F | and N = max

∂B
|u| = max |f |. In particular, when F ≡ 0 in B and u ≡ 0

on ∂B, then u ≡ 0 on B.
This is equivalent to the uniqueness of the Dirichlet problem:

u ∈ C2(B)⋂C(B̄)
∆u = F in B
u = f on ∂B.

Proof of the MP:
Define w(x) = u(x)+ (a2−r2)

4 M+N . We see that4w = F−M ≤ 0 so min
B̄
w = min

∂B
w ≥

0 or w ≥ 0 in B. Equivalently, we get u(x) ≥ −(N + a2

4 M) + r2

4 M ≥ −(N + a2

4 M).

Similarly, let w = u(x)− ( (a2−r2)
4 M + N). We see that 4w = h + H ≥ 0 so max

B̄
w =

max
∂B

w ≤ 0 or w ≤ 0 in B. Equivalently, we get u(x) ≤ (N+ a2

4 M)− r2

4 M ≥ (N+ a2

4 M).

Combining the above two estimates, we get |u(x)| ≤ N + a2

4 M .
Uniqueness:
If u1 and u2 are two solutions in C2(B)⋂C(B̄), we can apply the above to w = u1−u2
with corresponding M = N = 0 and thus w ≡ 0. Consequently, u1 ≡ u2.


