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There are 5 problems, each worth 25 points. You are required to do 1
4 of them. Indicate in the table which 4 you choose-Note: Only 4 5
problems will be graded. A sheet of convenient formulae is provided. ——
ota

1. Heat Equation

Let @ = (0,m) x (0,7) and @ the closure of this domain. Suppose that u(z,t) €
C?*(Q) x C°(Q) is a solution to:

u(x,t) = Uy (x,t) + F(x,t), (x,1) € Q,
u(0,t) = g(t), wu(m,t)=0, t>0, (1)
u(z,0) = f(z), 0<z<m.

(a) Let M = max{0,g(t), f(z)|(z,t) € Q}, N = max{0, F(z,t)|(z,t) € Q}, show
that u(z,t) < M 4+ tN. (State clearly the theorems that you are using).

(b) Let ¢ = 0 and F = 0. It is known that when f’(z) and f(z) are continuous
on [0, 7] with f(0) = f(w) = 0, the above equation has a classical solution (a
solution wu(x,t) € C?*(Q) x C°(Q)). Show the existence and uniqueness of a
classical solution when f is continuous and f(0) = f(w) = 0.

Solution a) Notice that N > 0. Let w = u— (M +Nt). Then w, —w,, = F(z,t)—N <
0, and w(0,t) = w(0,t) — M — Nt < u(0,t) — M < 0, w(L,t) < 0 likewise, also
w(x,0) <O0.

By the maximum principle, w(z,t) < 0, or equivalently, u(z,t) < M + tN.
b) It is clear from the formal solution u(z,t) (via separation of variables) that we get

a smooth solution for ¢ > 0. The key is to prove that this solution can be continuously
extend to t = 0.

For this purpose, we take a sequence of functions f,,(z) € C'[0, 7] with f,,(0) = f,.(L) =
0 that converge uniformly to f(z). Then the corresponding formal solution u,(x,t) is

in C%(Q) x C°(Q). By (a), we can get:
||Un - um”CO(@) < ||fn - fm||CO[O,7r] £ €nm 7 0

as n,m — oo. Thus, Ju € C°(Q) such that u, converges uniformly to 7 on Q.

Clearly, by the bounded convergence theorem, @ = u for t > 0. In other words, the
solution u(x, t), originally defined for ¢ > 0 can be continuously extended to t = 0 with
u(z,0) = limy_,op u(z,t) = limy_oy U(x,t) = u(z,0) = f(x).




2. Fourier Series

(a) Prove the Weierstrass approximation theorem: let f(x) be a 27-periodic, contin-
uous function, then Ve > 0, there exists a trigonometric polynomial 7'(z), such
that |f(z) — T'(z)| <€, Vx € R. (hint: construct a suitable reproducing ker-
nel/approximation of identity).

(b) Prove Parseval’s identity: if f(x) is a 2m-periodic, continuous function and

o
ao .
— + g a, cosnx + b, sinnx

fla) =

n=1

is its Fourier Series, then:

/f2 dx—w -|—7TZCL + b2).
n=1

Solution

-1
Solution for part (a). Step 1 ¢,(u) = ¢, cos* % where ¢, = (ffTr cos®" %du) is
an approximate identity on [—, 7], and it is a trlgonometrlc polynomial of degree

n in u.

Proof. We must show that ¢, is trigonometric polynomial and an approximate

identity:.

(a) Writing ¢, (u) = (€% +e2)2 with ¢t = [T cos? Ldu

(b) To show that ¢, is an approximate identity, we must verify the three prop-
erties of an approximate identity:

i.) ©n(u) > 0 since cos § > 0 for [u| < .
ii.)
m J7T cos®™ Ldu
duy = "T"——2— =1
/_ n(u)du = J7 cos?™ Sdu

iii.) ¢, (u) is ‘smooth’ (C*° in fact), and V6 > 0

fu|>500s Ldu .27 (cosg>2n 0

0 < lim on(u)du < lim < lim — <

= n—=00 Jjy|>6 T flys cos?™ gdu — n—ee § \ cos §

O

Thus lim,,_, f|u|25 ©n(u) = 0 by the squeeze theorem.

Step 2: T,,(z) = [T f(z+u)e,(u)du is a trigonometric polynomial of degree at most
n, such that
a, = max |T,,(z) — f(x)] = 0



Tu(x) = [ f(o+u)pn(w)du

T+x
/ w)on(w — z)dw
7r+:n

—/ w)on(w — x)dw

since both f(w) and ¢,(w) are 2m-periodic. ¢,(w — z) is a trigonometric
polynomial of degree n in w — x and by the difference angle theorem of cosine
and sine, we have @, (w — ) is a trigonometric polynomial of degree < n in
x with coefficients as functions in w. Thus T,,(x) = [T f(w)en(w — x)dz is
trigonometric polynomial of degree < n in .

(ii) By the theorem of approximate identity, T, (z) converges to f(x) uniformly,
or, Ve > 0 4N, such that

If(z) =T, (2)]<e VreR

Solution for part (b). Let

Sn(z) = Z ai cos kx + by, sin kx)

Q

2 O

then by the definition of ag, ay, and by, we know S, is the projection of f(x) into
H, = span{l,coskzx,sinkx}}_,

in the Hilbert space L?(—m, ). Thus for any trigonometric polynomial T'(x) of degree
< n (or equivalently, T'(x) € H,), we must have

/(@) = Sn(@)l|z2 < ||f(2) = T(2)l]

Step 1 lim, . ||f(x) — S, (2)||2 = 0 via Weierstrass. For all ¢ > 0, 37'(z), a trigono-
metric polynomial, such that

which implies



and thus
1f(z) = T()][r> < €
Let N = deg(T(x)), then for any n > N, T'(z) € H, implies

1f (@) = Su(@)[lr2 < | f () = T()]|

<e€
or
Tim [|£() — S|z = 0
Step 2
T 2 e’}
/ fA(z)dx = %7? + 7> (a®+b%)
- n=1

Using the fact that
/ cos® nxdr = / sin® nzdr = 7

and the orthogonality, we see
1Sall72 = / Si(z)de = Dm+ 7Y (a® +b%)

Thus from step 1,

| F@)de = |11 = lim |1,

a2 ' N
= 27+ lim 7Y (a* +b%)
2 N—o0 el
ag (2, 72
=57 +7 z:l(a +b%)

3. Method of Characteristics. The nonlinear PDE
V02 — 20040, + Ve = 0 (2)

is a special case of the so-called Monge-Ampére equation. In this problem, you will
reduce this system to an equivalent first order equation and then solve it.



(a) Show that (2) is equivalent to:
% _ VtUgt _ E @ . Vi Uz (3)
Uy v2 Uy | Vs v2

Then show that (3) can be written as an equivalent first order PDE for the new
function v = v;/v,. [Hint: we ordered the terms in (3) for a reason!]
(b) For the given initial conditions
v(2,0) = 1+ 2e*

v(z,0) = 4>
on —oo < x < 00, find u(z,t) for t > 0 and then find v(z,t) for t > 0.

Solution (a) It is straightforward to divide by v and rearrange to get the result (3).
Substitution for u = v;/v, then gives

U — Uty =0
(b) For the given initial /boundary conditions on v, we have

v (z,0) 4edx 2
ug(x) = u(x,0) = vt(x 0) =5 3m =3

To solve by the MoC, we write U(t; xo) = u(X(t;20),t), and then solve

dX
2
dt
dU
=0
dt
subject to U(0;z9) = wug(zo) and X (0;x¢) = 9. This gives U(t;z9) = uo(zo), and
X(t;x9) = —up(xo)t + xo, which gives a formal solution to the PDE

u(z,t) = ug (z + uo(xo(t; x))dt)

though we would have to invert z(t; o) to find x¢(t;2). However, since uy = 2, this
simply gives u(z,t) = 2 too.

To solve for v, we must solve the PDE
vt—uvxzvt—gvx:(]

This also easy, since it is now linear with constant coefficients, v(z,t) = vo(z + 2t), so
since vo(z) = v(x,0) we have

v(x,t) =1+ 232

Note that v(z,0) = 4¢3, as required. We check by substitution back into (2); this
gives an identity.




4. Wave equation

(a) Let u be a classical solution of u; = c*uy, (¢ > 0) on R x (0,00) and define

1 jatc(t—s)

E,i(s) ==

5 [ w2y, s) + ug(y, s)ldy
z—c(t—s)

for z € R and t > s > 0. Show that L E, ,(s) < 0 for s € (0, 1).

(b) For the classical solution in (a), let E(s) = 5 [0 [u2(y, s) + Pul(y, s)]dy. Show
that E(s) is monotone non-increasing, and in particular, if E(sq) is finite then
show that E(s) is finite for all s > s.

(c¢) Apply the ‘energy inequality’ from (a) to show that there is at most one classical
solution to the initial value problem:
Uy (7,t) = Fuge(z,t) + F(2,t), x€R, t>0,
u(z,0) = f(z),
Ut((lf, 0) - g(l’)7

with ¢ > 0, such that u(z,t) € C*'(R x [0,00)) N C?*(R x (0, 00)).

Solution for part (a).
LFE.(s) = [1 2(:}c+c(t—s)),s)—i— scul(z+c(t —s),s

—c[3u (m—c(t s)),s) + 102u2( —c(t—s),s

+I$+Ct 3 [y ) s (4, 5) + 1y (g, )y

=
VA
L2 =2 2
—_— Ty, —
<

S 1 P N R N
—c[zu(z —c(t —s)),s) + 1cQuQ( —c(t—s),s
+c uy(x +c(t—s),s

7)us(yc + c(t —5),5)
—c*uy(x — c(t — 5), s)us(x — c(t — 5), 5)

+ fx+cc(tt ss [us(y, $)uss(y, 5) — Czus(f% S)Uyy(ya s)|dy
= —f[us(x—i—c( s)),8) — cuy(z + c(t — s), s)|?
Slus(z —c(t = 5)), 5) + cuy(x — c(t — s),9)]?
< 0
d O

Solution for part (b). First, since the integrand does not change sign, for fixed
s and any given z, we see that lim, , o F,.(s) = lim;_, o QIHCC((; ss))[ ui(y, s) +

Ful(y, s)ldy = 5 [22[u2(y, s) + ul(y, s)]ldy = E(s). O



Thus for 0 < s; < 59 we have E(s2) = limy o Fo(s2) = limy_ 4o % ff(ct(;fi)g)[ug(y, So)+

Al (y, 52)|dy < limy_y 4o 3 ff(;(;fls)l)[ u(y, s1) + ul(y, s1)|dy = E(s1). Here we have
pick z = 0.

In short, E(sy) < E(sy) for s < sy or E(s) is monotone non-increasing and conse-
quently if £(0) is finite then E(s) is also finite for all s > 0.

Solution for part (c). Suppose uy,uy are two solutions. Let u = u; — ug. Note that
this solves the homogeneous problem, with F' = f = g = 0. By part (a), E,.(s) <
E,+(0) = 0. So, since both terms in the integrand are non-negative,

x+ct
/ u3(y, 5)dy = 0.

—ct

Since u(y, s) is continuous, we have us(y, s) = 0 fory € (z—ct,z+ct), 0 < s < t. Now,
let ¢ — oo, and we have u,(y,s) = 0 for y € (—o00,00) and s > 0. Since u(y,0) = 0,
we get u(y, s) = 0. O

. Poisson’s Equation

Let B={(r,0)|0<r <a,0<60<2r} €R?for a > 0, be the open disk of radius a
centered at the origin, with polar coordinates (r,#). Consider the problem

Au = F(r,0), (r0) e B, (4)
u(a,0) = f(0).
(a) Find a formal solution u(r,#) that ‘solves’ (4) for F' = 0.

(b) Find conditions on f that assure the formal solution u obtained in part (a) is in
C°(B). Give a proof of your conclusion.

(c) State and prove a version of the maximum principle (stability estimate) for (4).
Apply it to prove that (4) admits at most one classical solution u € C°(B)NC?(B)
for given functions F' and f.

Solution for part (a). :

The formal solution is given by (you can derive this either by separation of variables
or using the analytic functions 2"):

u(r,0) = % + 5232 (a, cos nf + by, sin nd)(£)", with
an = L 27 cos(nf) f(0)d6 and b, = L [ sin(nf) f(0)d6 for n = 0,1,2,3, -



Solution for part (b). The formal solution is in C°(B) if f is in C'[0, 2] with f(0) =
f(2m).

In fact, let f'(6) = % + X027 (o, cosnf + B, sinnd).

Then by Parseval’s identity, we have 3%, (a2 + %) < occ.

Applying the integration by parts, and using the fact that f(0) = f(27), we derive:

a, = _Tﬂ" and b, = <. Thus, each term in our formal solution satisfies:

|G| + Jewn]

n 0+ by, 0 <
|(a,, cosn@ + b, sinn )(a) | "

To show that the formal series solution give a continuous function for r < a, we only
need to check that the dominating convergence theorem can be applied here for uniform
convergence:

We only need: > 77 15 "'Z'O‘M < 00. This can be obtam via Schwartz inequality:
) Iﬁn‘ﬂan‘ < (ZOO 118al? ) (s n2)2 + (02 low]? ) (X1 #)2 < 0.
The proof is completed.

Solution for part (c). Statement of a MP:

Assume that v € C?(B)NC(B) and Au = F in B, then |u(x)] < N + ‘1—2]\/[ where
M = max |F| and N = I%%X|u| = max |f|. In particular, when F'=01in B and u =0
B

on 0B, then u =0 on B.
This is equivalent to the uniqueness of the Dirichlet problem:
u € C*(B)NC(B)
Au=F in B
u= f on 0B.

Proof of the MP:

Define w(x) = u(:r;)—l—(“ ) M+N. We see that Aw = F—M < 0o minw = minw >
B

0 or w > 0 in B. Equivalently, we get u(x) > —(N + ZM) + ZM > —(N+ ZM)'
Similarly, let w = u(z) — ((a M + N). We see that Aw =h+ H > 0 so maxw =
B

max w < 0orw < 0in B. Equivalently, we get u(z) < (N+§M)—§M > (N—i—“4—2M).

Combining the above two estimates, we get |u(z)] < N + %M.
Uniqueness:

If u; and uy are two solutions in C?(B) N C(B), we can apply the above to w = u; —us
with corresponding M = N = 0 and thus w = 0. Consequently, u; = us. O



