
PDE Preliminary Examination: 1/14/2015

Name:

There are 5 problems, each worth 25 points. You are required to do
4 of them. Indicate in the table which 4 you choose–Note: Only 4
problems will be graded. A sheet of convenient formulae is provided.

# Choice (X) score
1
2
3
4
5

Total

1. Heat Equation

Let Q = (0, π) × (0, T ) and Q the closure of this domain. Suppose that u(x, t) ∈
C2(Q)× C0(Q) is a solution to:

ut(x, t) = uxx(x, t) + F (x, t), (x, t) ∈ Q,
u(0, t) = g(t), u(π, t) = 0, t > 0,
u(x, 0) = f(x), 0 ≤ x ≤ π.

(1)

(a) Let M = max{0, g(t), f(x)|(x, t) ∈ Q}, N = max{0, F (x, t)|(x, t) ∈ Q}, show
that u(x, t) ≤M + tN . (State clearly the theorems that you are using).

(b) Let g ≡ 0 and F ≡ 0. It is known that when f ′(x) and f(x) are continuous
on [0, π] with f(0) = f(π) = 0, the above equation has a classical solution (a
solution u(x, t) ∈ C2(Q) × C0(Q)). Show the existence and uniqueness of a
classical solution when f is continuous and f(0) = f(π) = 0.

2. Fourier Series

(a) Prove the Weierstrass approximation theorem: let f(x) be a 2π-periodic, contin-
uous function, then ∀ε > 0, there exists a trigonometric polynomial T (x), such
that |f(x) − T (x)| ≤ ε, ∀x ∈ R. (hint: construct a suitable reproducing ker-
nel/approximation of identity).

(b) Prove Parseval’s identity: if f(x) is a 2π-periodic, continuous function and

f(x) =
a0
2

+
∞∑
n=1

an cosnx+ bn sinnx

is its Fourier Series, then:∫ π

−π
f 2(x)dx = π

a20
2

+ π
∞∑
n=1

(a2n + b2n).

...Turn over for problem 3...



3. Method of Characteristics. The nonlinear PDE

vttv
2
x − 2vxtvtvx + v2t vxx = 0 (2)

is a special case of the so-called Monge-Ampère equation. In this problem, you will
reduce this system to an equivalent first order equation and then solve it.

(a) Show that (2) is equivalent to:

vtt
vx
− vtvxt

v2x
=
vt
vx

{
vxt
vx
− vtvxx

v2x

}
(3)

Then show that (3) can be written as an equivalent first order PDE for the new
function u = vt/vx. [Hint: we ordered the terms in (3) for a reason!]

(b) For the given initial conditions

v(x, 0) = 1 + 2e3x

vt(x, 0) = 4e3x

on −∞ < x <∞, find u(x, t) for t > 0 and then find v(x, t) for t > 0.

4. Wave equation

(a) Let u be a classical solution of utt = c2uxx (c > 0) on R× (0,∞) and define

Ex,t(s) =
1

2

∫ x+c(t−s)

x−c(t−s)
[ u2s(y, s) + c2u2y(y, s)]dy

for x ∈ R and t ≥ s > 0. Show that d
ds
Ex,t(s) ≤ 0 for s ∈ (0, t).

(b) For the classical solution in (a), let E(s) = 1
2

∫∞
−∞[u2s(y, s) + c2u2y(y, s)]dy. Show

that E(s) is monotone non-increasing, and in particular, if E(s0) is finite then
show that E(s) is finite for all s > s0.

(c) Apply the ‘energy inequality’ from (a) to show that there is at most one classical
solution to the initial value problem:

utt(x, t) = c2uxx(x, t) + F (x, t), x ∈ R, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x),

with c > 0, such that u(x, t) ∈ C1(R× [0,∞)) ∩ C2(R× (0,∞)).



5. Poisson’s Equation

Let B = {(r, θ) | 0 ≤ r < a, 0 ≤ θ < 2π} ∈ R2 for a > 0, be the open disk of radius a
centered at the origin, with polar coordinates (r, θ). Consider the problem

∆u = F (r, θ), (r, θ) ∈ B,
u(a, θ) = f(θ).

(4)

(a) Find a formal solution u(r, θ) that ‘solves’ (4) for F ≡ 0.

(b) Find conditions on f that assure the formal solution u obtained in part (a) is in
C0(B). Give a proof of your conclusion.

(c) State and prove a version of the maximum principle (stability estimate) for (4).
Apply it to prove that (4) admits at most one classical solution u ∈ C0(B)∩C2(B)
for given functions F and f .


