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There are 5 problems, each worth 25 points. You are required to do 1
4 of them. Indicate in the table which 4 you choose-Note: Only 4 5
problems will be graded. A sheet of convenient formulae is provided. 1
Tota

1. Heat Equation

Let @ = (0,7) x (0,T) and Q the closure of this domain. Suppose that u(x,t) €
C%(Q) x C°(Q) is a solution to:

up(z,t) = Uge (2, t) + F(2,1), (2,1) € Q,
w(0.1) = glt), u(m,t) =0, 10, 1)
u(z,0) = f(z), 0<zxz<m.

(a) Let M = max{0,g(t), f(z)|(z,t) € Q}, N = max{0, F(x,t)|(x,t) € Q}, show
that u(z,t) < M +tN. (State clearly the theorems that you are using).

(b) Let ¢ = 0 and F = 0. It is known that when f’(z) and f(z) are continuous
on [0,7] with f(0) = f(m) = 0, the above equation has a classical solution (a
solution u(z,t) € C%*Q) x C°(Q)). Show the existence and uniqueness of a
classical solution when f is continuous and f(0) = f(r) = 0.

2. Fourier Series

(a) Prove the Weierstrass approximation theorem: let f(x) be a 27-periodic, contin-
uous function, then Ve > 0, there exists a trigonometric polynomial 7'(z), such
that |f(z) — T(x)] <€ Va € R. (hint: construct a suitable reproducing ker-
nel/approximation of identity).

(b) Prove Parseval’s identity: if f(x) is a 2m-periodic, continuous function and
ap > .
f(z) = 5 + Zancosnx + b, sinnx

n=1

is its Fourier Series, then:

™ 2 o
/ fQ(x)dx:ﬂ%—l—WZ(ai—i-bi).
-m n=1

... Turn over for problem 3...



3. Method of Characteristics. The nonlinear PDE
Uttvi — 20,4040, + vam =0 (2)

is a special case of the so-called Monge-Ampére equation. In this problem, you will
reduce this system to an equivalent first order equation and then solve it.

(a) Show that (2) is equivalent to:

Uy v?

(3)

Uy v2 Uy

Ut UVtUze Ut {Umt Utva:x}
x

Then show that (3) can be written as an equivalent first order PDE for the new
function u = v;/v,. [Hint: we ordered the terms in (3) for a reason!]

(b) For the given initial conditions

v(x,0) = 1+ 2%

vi(z,0) = 4>

on —oo < x < 00, find u(z,t) for t > 0 and then find v(z,t) for ¢t > 0.

4. Wave equation

(a) Let u be a classical solution of uy; = c*uy, (¢ > 0) on R x (0,00) and define

1 x+c(t—s) ) 5 o
Baals) =5 [ [u09)+ udly o)y

—c(t—s)

for z € R and t > s > 0. Show that £ E,,(s) <0 for s € (0,1).

(b) For the classical solution in (a), let E(s) = 5 [~ [u2(y,s) + u(y, s)ldy. Show

that F(s) is monotone non-increasing, and in particular, if E(sq) is finite then
show that E(s) is finite for all s > s.

(c¢) Apply the ‘energy inequality’ from (a) to show that there is at most one classical
solution to the initial value problem:
Uy (2,t) = Cuge(z,t) + F(z,t), z€R, t>0,
u(x,()) = f<x)>
Ut(l'7 0) = g(l’),

with ¢ > 0, such that u(z,t) € C'(R x [0,00)) N C*R x (0, 0)).



5. Poisson’s Equation

Let B={(r,0)]0<r <a,0<6<2r} €R?for a > 0, be the open disk of radius a
centered at the origin, with polar coordinates (r,#). Consider the problem

Au = F(r,0), (r,0)¢€ B,
u(a,0) = f(0). (4)

(a) Find a formal solution u(r, 8) that ‘solves’ (4) for F' = 0.

(b) Find conditions on f that assure the formal solution u obtained in part (a) is in
C%(B). Give a proof of your conclusion.

(c) State and prove a version of the maximum principle (stability estimate) for (4).
Apply it to prove that (4) admits at most one classical solution u € C°(B)NC?(B)
for given functions F' and f.



