Preliminary Examination (Solutions): Partial Differential Equations,
 10:00 AM - 1:00 PM, Aug. 15, 2016, Newton Lab.

Name:

\qquad

There are five problems. Solve four of the five problems.

$\#$	possible	score
1	25	
2	25	
3	25	
4	25	
5	25	
Total	100	

1. (Quasi-linear equations) Consider the quasi-linear equation

$$
\begin{equation*}
u_{y}+u u_{x}=1 \tag{1}
\end{equation*}
$$

In each of the following parts, solve eq. (1) subject to the given data if possible. State the region in the $x-y$ plane where the solution is classical and is unique. If it is not possible to obtain a unique, classical solution, state why.
(a) $(10 \mathrm{pts}) u(x, x)=2$.
(b) $(8 \mathrm{pts}) u\left(y^{2} / 4, y\right)=y / 2$.
(c) $(7 \mathrm{pts}) u\left(y^{2} / 2, y\right)=y$.

Solution: Equation (1) can be solved by the method of characteristics. Given data along a curve $\left(x_{0}(\tau), y_{0}(\tau), u_{0}(\tau)\right)$ for τ in some interval, we identify the characteristic equations

$$
\begin{array}{ll}
\frac{d x}{d s}=u, & x(0, \tau)=x_{0}(\tau) \\
\frac{d y}{d s}=1, & y(0, \tau)=y_{0}(\tau) \\
\frac{d u}{d s}=1, & u(0, \tau)=u_{0}(\tau)
\end{array}
$$

This initial value problem can be solved

$$
\begin{aligned}
& x(s, \tau)=\frac{1}{2} s^{2}+u_{0}(\tau) s+x_{0}(\tau) \\
& y(s, \tau)=s+y_{0}(\tau) \\
& u(s, \tau)=s+u_{0}(\tau)
\end{aligned}
$$

In order to obtain a unique, classical solution to eq. (1), we must be able to effect the transformation $(x(s, \tau), y(s, \tau)) \rightarrow(s(x, y), \tau(x, y))$. The Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\
\frac{\partial x}{\partial \tau} & \frac{\partial y}{\partial \tau}
\end{array}\right|=\left|\begin{array}{cc}
s+u_{0}(\tau) & 1 \\
u_{0}^{\prime}(\tau) s+x_{0}^{\prime}(\tau) & y_{0}^{\prime}(\tau)
\end{array}\right| .
$$

(a) The data is parameterized by

$$
x_{0}(\tau)=\tau, \quad y_{0}(\tau)=\tau, \quad u_{0}(\tau)=2, \quad \tau \in \mathbb{R}
$$

Then $J=s+1$ so that the transformation $(x(s, \tau), y(s, \tau)) \rightarrow(s(x, y), \tau(x, y))$ is invertible near the data where $s=0$. A calculation gives the unique solution

$$
u(x, y)=1+\sqrt{1+4 x-4 y}
$$

valid so long as $y<x-1 / 4$.
(b) The data is parameterized by

$$
x_{0}(\tau)=\tau^{2}, \quad y_{0}(\tau)=2 \tau, \quad u_{0}(\tau)=\tau, \quad \tau \in \mathbb{R}
$$

Then $J=s$ so that the transformation $(x(s, \tau), y(s, \tau)) \rightarrow(s(x, y), \tau(x, y))$ is not guaranteed to be invertible near the data where $s=0$. We can obtain a formal solution using the method of characteristics

$$
x=\frac{1}{2} s^{2}+\tau s+\tau^{2}, \quad y=s+2 \tau, \quad u=s+\tau
$$

which can be inverted to obtain the explicit form

$$
u(x, y)=\frac{y}{2} \pm \frac{\sqrt{4 x-y^{2}}}{2}
$$

For both signs of the radical, $u\left(y^{2} / 4, y\right)=y / 2$, so we see that the formal solution is not unique for the given data. Moreover, $u_{x}= \pm\left(4 x-y^{2}\right)^{-1 / 2}$, so that the formal solution is not even differentiable at the data.
(c) The data is parameterized by

$$
x_{0}(\tau)=\frac{\tau^{2}}{2}, \quad y_{0}(\tau)=\tau, \quad u_{0}(\tau)=\tau, \quad \tau \in \mathbb{R}
$$

Then $J=0$ everywhere so that the transformation $(x(s, \tau), y(s, \tau)) \rightarrow(s(x, y), \tau(x, y))$ is not guaranteed to be invertible. The data actually lies on a characteristic curve because

$$
\frac{d x_{0}}{d \tau}=\tau=u_{0}, \quad \frac{d y_{0}}{d \tau}=1, \quad \frac{d u_{0}}{d \tau}=1
$$

This implies that there is no unique way to "propagate" the solution off the initial curve. The formal, characteristic solution is

$$
x=\frac{(s+\tau)^{2}}{2}, \quad y=s+\tau, \quad u=s+\tau
$$

which depends on only one parameter $s+\tau$. For example, $u(x, y)=y$ and $u(x, y)=-1-\sqrt{1+2 x+2 y}$ are solutions so that the solution is not unique.
2. (Heat equation) (25 pts) State and prove the (weak) maximum principle for continuous solutions of

$$
\begin{equation*}
u_{t}=a(x, t) u_{x x}, \quad x \in(0,1), \quad t \in(0, T], \quad T>0, \tag{2}
\end{equation*}
$$

where a is continuous and $a(x, t) \geq a_{0}>0$ for all $x \in[0,1], t \geq 0$.
Solution: Theorem. Let $U_{T}=(0,1) \times(0, T]$ and $\Gamma_{T}=\overline{U_{T}} \backslash U_{T}$ be its parabolic boundary. If $u(x, t)$ is continous on $\overline{U_{T}}$, twice continously differentiable on U_{T}, and satisfies eq. (2), then

$$
\max _{(x, t) \in \overline{U_{T}}} u(x, t)=\max _{(x, t) \in \Gamma_{T}} u(x, t) .
$$

Proof. Let $M=\max _{\Gamma_{T}} u(x, t)$. Let $v(x, t)=u(x, t)+\epsilon x^{2}$ where $\epsilon>0$. Then

$$
\begin{equation*}
v_{t}-a(x, t) v_{x x}=u_{t}-a(x, t) u_{x x}-2 \epsilon<0, \tag{3}
\end{equation*}
$$

since $u_{t}-a(x, t) u_{x x}=0$. Suppose v has a local maximum in U_{T} at $\left(x_{0}, t_{0}\right)$ with $t_{0}<T$. Then $v_{t}=0=v_{x}=0$ and $v_{x x} \leq 0$ at $\left(x_{0}, t_{0}\right)$. This implies $v_{t}-a(x, t) v_{x x} \geq 0$ at $\left(x_{0}, t_{0}\right)$. But this contradicts eq. (3) so v cannot have a maximum in the interior of U_{T}.
Now suppose v has a maximum on the line $t=T$ at $\left(x_{1}, T\right)$. Then $v_{x}=0, v_{x x} \leq 0$, and $v_{t} \geq 0$ at $\left(x_{1}, T\right)$. This implies $v_{t}-a(x, t) v_{x x} \geq 0$, again contradicting (3).
Therefore, by continuity, the maximum of v on $\overline{U_{T}}$ occurs on Γ_{T}. This implies

$$
u(x, t)+\epsilon x^{2} \leq \max _{(y, t) \in \Gamma_{T}} u(y, t)+\epsilon y^{2} \leq \max _{\Gamma_{T}} u+\epsilon, \quad \text { for all }(x, t) \in \overline{U_{T}},
$$

Then

$$
u(x, t) \leq M+\epsilon\left(1-x^{2}\right) \leq M+\epsilon
$$

Since $\epsilon>0$ is arbitrary, we have $u(x, t) \leq M$ for all $(x, t) \in \overline{U_{T}}$.

3. (Fourier series)

(a) (8 points) State the Weierstrass approximation theorem with any assumptions necessary.
(b) (17 points) Suppose $f(x)$ is a continuous 2π periodic function. Prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(2 \pi n \alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x
$$

for any irrational α. [Hint: prove it for $e^{i n x}$ first and then use (a)].

Solution:

(a) See book.
(b) Let α be irrational. First prove the statement for $f(x)=e^{i m x}$. For $m=0$ both quantities are 1. For $m \neq 0$ we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i m x} d x=\left.\frac{1}{2 m \pi i} e^{i m x}\right|_{0} ^{2 \pi}=0
$$

and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i n m \alpha}=\lim _{N \rightarrow \infty} \frac{1}{N} \frac{e^{2 \pi i m(N+1) \alpha}-1}{e^{2 \pi i m \alpha}-1}=0 \tag{4}
\end{equation*}
$$

since the denominator is not zero since α is irrational, and the norm of the numerator is bounded.
Now, for the given f, invoke the Weierstrass approximation theorem. Given $\epsilon>0$, we can find a trigonometric polynomial $T_{\epsilon}(x)$ such that $\left\|T_{\epsilon}-f\right\|_{\infty}<\epsilon$. Informally, the idea is that the sum of f is close to the sum of T_{ϵ}, the sum of T_{ϵ} is close to the integral of T_{ϵ} (by the first part), and the integral of T_{ϵ} is close to the integral of f. To make this precise, we use the triangle inequality. We have

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{n=1}^{N} f(2 \pi n \alpha)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x\right|= \\
& \left\lvert\, \frac{1}{N} \sum_{n=1}^{N} f(2 \pi n \alpha)-\frac{1}{N} \sum_{n=1}^{N} T_{\epsilon}(2 \pi n \alpha)\right. \\
& +\frac{1}{N} \sum_{n=1}^{N} T_{\epsilon}(2 \pi n \alpha)-\frac{1}{2 \pi} \int_{0}^{2 \pi} T_{\epsilon}(x) d x \\
& \left.+\frac{1}{2 \pi} \int_{0}^{2 \pi} T_{\epsilon}(x) d x-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x \right\rvert\,
\end{aligned}
$$

Using the triangle inequality, we get

$$
\begin{array}{r}
\left|\frac{1}{N} \sum_{n=1}^{N} f(2 \pi n \alpha)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x\right| \leq \\
\frac{1}{N} \sum_{n=1}^{N}\left\|f-T_{\epsilon}\right\|_{\infty} \\
+\left|\frac{1}{N} \sum_{n=1}^{N} T_{\epsilon}(2 \pi n \alpha)-\frac{1}{2 \pi} \int_{0}^{2 \pi} T_{\epsilon}(x) d x\right| \\
+\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|T_{\epsilon}-f\right\|_{\infty} d x
\end{array}
$$

Using $\left\|T_{\epsilon}-f\right\|_{\infty}<\epsilon$ we get

$$
\begin{array}{r}
\left|\frac{1}{N} \sum_{n=1}^{N} f(2 \pi n \alpha)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x\right| \leq \\
2 \epsilon+\left|\frac{1}{N} \sum_{n=1}^{N} T_{\epsilon}(2 \pi n \alpha)-\frac{1}{2 \pi} \int_{0}^{2 \pi} T_{\epsilon}(x) d x\right|
\end{array}
$$

Now, $T_{\epsilon}(x)=\sum_{m=-M_{\epsilon}}^{M_{\epsilon}} a_{m} e^{i m x}$. We have $\frac{1}{2 \pi} \int_{0}^{2 \pi} T_{\epsilon}(x) d x=a_{0}$, which cancels with the corresponding term in the sum, leaving

$$
\begin{aligned}
\left|\frac{1}{N} \sum_{n=1}^{N} f(2 \pi n \alpha)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x\right| \leq 2 \epsilon & +\sum_{m=1}^{M_{\epsilon}}\left|a_{m}\right|\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i n m \alpha}\right| \\
& +\sum_{m=-M_{\epsilon}}^{-1}\left|a_{m}\right|\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i n m \alpha}\right| .
\end{aligned}
$$

By (4), there is an N_{ϵ}, independent of $|m| \leq M_{\epsilon}$, such that $\left|\frac{1}{N_{\epsilon}} \sum_{n=1}^{N_{\epsilon}} e^{2 \pi i n m \alpha}\right|<$ $\epsilon /\left(\left|a_{m}\right| M_{\epsilon}\right)$ for all m if $N>N_{\epsilon}$. Therefore, for $N>N_{\epsilon}$

$$
\left|\frac{1}{N} \sum_{n=1}^{N} f(2 \pi n \alpha)-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x\right| \leq 4 \epsilon
$$

which shows the desired limit.
4. (Wave equation) Suppose u is a smooth solution of the initial/boundary value problem

$$
\begin{align*}
& u_{t t}-u_{x x}=f_{x}(x), \quad t>0, \quad 0<x<1 \\
& u(x, 0)=h(x), \quad u_{t}(x, 0)=g(x), \tag{5}\\
& u(0, t)=u(1, t)=0,
\end{align*}
$$

with f, h and g smooth and $h(0)=h(1)=0$.
(a) (6 pts) Show that

$$
\frac{d}{d t} \int_{0}^{1}\left[u_{x}^{2}+u_{t}^{2}\right] d x=2 \int_{0}^{1} f_{x}(x) u_{t} d x
$$

(b) (7 pts) Show that smooth solutions to the initial value problem (5) are unique.
(c) (12 pts) Show that there is a constant K, depending only on f, g, and h_{x}, such that

$$
\int_{0}^{1}\left[u_{x}^{2}+u_{t}^{2}\right] d x<K, \quad t>0
$$

(Hint: You might want to use the inequality $a b \geq-a^{2}-b^{2} / 4$.)

Solution:

(a) Multiplying the equation by u_{t} and integrating from 0 to 1 we get

$$
\begin{aligned}
\int_{0}^{1}\left[u_{t t} u_{t}-u_{x x} u_{t}\right] d x & =\int_{0}^{1} f_{x}(x) u_{t} d x \\
\int_{0}^{1}\left[\frac{1}{2} \frac{\partial}{\partial t}\left(u_{t}\right)^{2}-u_{x x} u_{t}\right] d x & =\int_{0}^{1} f_{x}(x) u_{t} d x
\end{aligned}
$$

Integrating by parts,

$$
\int_{0}^{1}\left[\frac{1}{2} \frac{\partial}{\partial t}\left(u_{t}\right)^{2}+u_{x} u_{t x}\right] d x-\left.u_{t} u_{x}\right|_{0} ^{1}=\int_{0}^{1} f_{x}(x) u_{t} d x
$$

Using the boundary condition $u_{t}(0, t)=u_{t}(1, t)=0$ and recognizing the second term in the integral as $\frac{1}{2} \frac{\partial}{\partial t}\left(u_{x}\right)^{2}$ we get

$$
\begin{equation*}
\frac{d}{d t} \int_{0}^{1}\left[u_{x}^{2}+u_{t}^{2}\right] d x=2 \int_{0}^{1} f_{x}(x) u_{t} d x \tag{6}
\end{equation*}
$$

(b) Suppose there are two such solutions u_{1} and u_{2}. Then their difference $w=u_{1}-u_{2}$ satisfies

$$
\begin{aligned}
& w_{t t}-w_{x x}=0, \quad t>0, \quad 0<x<1 \\
& w(x, 0)=0, \quad w_{t}(x, 0)=0, \\
& w(0, t)=w(1, t)=0
\end{aligned}
$$

Since $f_{x} \equiv 0$ for this problem, $\frac{d}{d t} \int_{0}^{1}\left[w_{x}^{2}+w_{t}^{2}\right] d x=0$ and the energy $E(t)=$ $\frac{1}{2} \int_{0}^{1}\left[w_{x}^{2}+w_{t}^{2}\right] d x$ is constant. At $t=0, E(0)=0$ by the initial conditions and thus $E(t)=\frac{1}{2} \int_{0}^{1}\left[w_{x}^{2}+c^{2} w_{t}^{2}\right] d x=0$ for all $t>0$. This implies, since w is smooth, that $w_{x} \equiv 0, w_{t} \equiv 0$ in $[0,1]$ and therefore $w(x, t)=W$, a constant that must be 0 by the initial conditions. Therefore $u_{1} \equiv u_{2}$.
(c) Integrating (6) in time from 0 to t, letting $E(t)=\frac{1}{2} \int_{0}^{1}\left[u_{x}^{2}+u_{t}^{2}\right] d x$, we obtain

$$
E(t)-E(0)=E(t)-\frac{1}{2} \int_{0}^{1}\left[h_{x}(x)^{2}+g(x)\right] d x=\int_{0}^{1} f_{x}(x)(u(x, t)-h(x)) d x .
$$

Integrating by parts on the right hand side,

$$
E(t)-\frac{1}{2} \int_{0}^{1}\left[h_{x}^{2}+g\right] d x=\left.f(x)(u(x, t)-h(x))\right|_{0} ^{1}-\int_{0}^{1} f(x)\left(u_{x}(x, t)-h_{x}(x)\right) d x .
$$

On the boundary, $u=h=0$, so

$$
\begin{aligned}
E(t) & =\frac{1}{2} \int_{0}^{1}\left[h_{x}^{2}+g\right] d x-\int_{0}^{1} f(x)\left(u_{x}(x, t)-h_{x}(x)\right) d x \\
& =\frac{1}{2} \int_{0}^{1}\left[h_{x}^{2}+g\right] d x+\int_{0}^{1} f h_{x} d x-\int_{0}^{1} f(x) u_{x}(x, t) d x
\end{aligned}
$$

Using the inequality $-a b \leq a^{2}+b^{2} / 4$ for the last integral we get

$$
E(t) \leq \frac{1}{2} \int_{0}^{1}\left[h_{x}^{2}+g\right] d x+\int_{0}^{1} f h_{x} d x+\int_{0}^{1} f^{2} d x+\frac{1}{4} \int_{0}^{1} u_{x}(x, t)^{2} d x
$$

Recalling $E(t)=\frac{1}{2} \int_{0}^{1}\left[u_{x}^{2}+u_{t}^{2}\right] d x$ and rearranging,

$$
\int_{0}^{1}\left[u_{x}^{2}+2 u_{t}^{2}\right] d x \leq 2 \int_{0}^{1}\left[h_{x}^{2}+g\right] d x+4 \int_{0}^{1} f h_{x} d x+4 \int_{0}^{1} f^{2} d x \equiv K
$$

and so

$$
\int_{0}^{1}\left[u_{x}^{2}+u_{t}^{2}\right] d x \leq \int_{0}^{1}\left[u_{x}^{2}+2 u_{t}^{2}\right] d x \leq K
$$

5. (Elliptic problem)

(a) (10 pts) Consider the boundary value problem in the upper half plane

$$
\begin{aligned}
u_{x x}+u_{y y} & =0, \quad x \in \mathbb{R}, \quad y>0 \\
u(x, 0) & =f(x), \quad x \in \mathbb{R} .
\end{aligned}
$$

Construct Green's function for this Dirichlet problem.
(b) (5 pts) Show that if $v(x, y)$ is harmonic, so is $u(x, y)=v\left(x^{2}-y^{2}, 2 x y\right)$.
(c) (5 pts) Show that the transformation $(x, y) \rightarrow\left(x^{2}-y^{2}, 2 x y\right)$ maps the first quadrant onto the upper half-plane. Hint: Use polar coordinates.
(d) (5 pts) Consider the boundary value problem in the quarter plane

$$
\begin{aligned}
u_{x x}+u_{y y}=0, \quad x>0, & y>0 \\
u(x, 0)=f(x), & x>0 \\
u(0, y)=g(y), & y>0
\end{aligned}
$$

Construct Green's function for this Dirichlet problem using your results from (a)-(c).

Solution:

(a) The fundamental solution for Laplace's equation in \mathbb{R}^{2} is

$$
\Phi(r)=-\frac{1}{2 \pi} \ln (r) .
$$

Using the method of images, the Green's function for the upper half plane is

$$
\begin{aligned}
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\Phi\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)-\Phi\left(\left|\mathbf{x}-\mathbf{x}^{\prime *}\right|\right)=\frac{1}{2 \pi} \ln \left(\frac{\left|\mathbf{x}-\mathbf{x}^{\prime *}\right|}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right) \\
& =\frac{1}{4 \pi} \ln \left(\frac{\left(x-x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}}{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}\right)
\end{aligned}
$$

where $\mathbf{y}^{\prime *}=\left(x^{\prime},-y^{\prime}\right)$ is the reflection of $\mathbf{y}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ about the line $y^{\prime}=0$.
(b) Let $\eta=x^{2}-y^{2}, \xi=2 x y$. Suppose $v_{\eta \eta}+v_{\xi \xi}=0$ then

$$
\begin{aligned}
u_{x} & =2 x v_{\eta}+2 y v_{\xi} \\
u_{x x} & =2 v_{\eta}+4 x^{2} v_{\eta \eta}+8 x y v_{\eta \xi}+4 y^{2} v_{\xi \xi} \\
u_{y} & =-2 y v_{\eta}+2 x v_{\xi}, \\
u_{y y} & =-2 v_{\eta}+4 y^{2} v_{\eta \eta}-8 x y v_{\eta \xi}+4 x^{2} v_{\xi \xi} .
\end{aligned}
$$

Combining these results

$$
u_{x x}+u_{y y}=0
$$

so $u(x, y)$ is harmonic.
(c) Suppose $x=r \cos \theta, y=r \sin \theta$ for $r>0,0<\theta<\pi / 2$ so that (x, y) is in the first quadrant. Then $(\eta, \xi)=\left(r^{2} \cos 2 \theta, r^{2} \sin 2 \theta\right)$ necessarily lie in the upper half plane $\xi>0$. Because the transformation is invertible, the converse is also true.
(d) Combining the previous results, the Green's function for the quarter plane is

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{4 \pi} \ln \left(\frac{\left(x^{2}-y^{2}-x^{\prime 2}+y^{\prime 2}\right)^{2}+\left(2 x y+2 x^{\prime} y^{\prime}\right)^{2}}{\left(x^{2}-y^{2}-x^{\prime 2}+y^{\prime 2}\right)^{2}+\left(2 x y-2 x^{\prime} y^{\prime}\right)^{2}}\right)
$$

The same result can be obtained by the method of images with

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{4 \pi} \ln \left(\frac{\left[\left(x-x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}\right]\left[\left(x+x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]}{\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]\left[\left(x+x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}\right]}\right) .
$$

