
Preliminary Examination (Solutions): Partial Differential
Equations,
10:00 AM - 1:00 PM, Aug. 15, 2016,
Newton Lab.

Name:

There are five problems. Solve four of the five problems.
Each problem is worth 25 points. A sheet of convenient formulae
is provided.

# possible score
1 25
2 25
3 25
4 25
5 25

Total 100

1. (Quasi-linear equations) Consider the quasi-linear equation

uy + uux = 1. (1)

In each of the following parts, solve eq. (1) subject to the given data if possible. State
the region in the x-y plane where the solution is classical and is unique. If it is not
possible to obtain a unique, classical solution, state why.

(a) (10 pts) u(x, x) = 2.
(b) (8 pts) u(y2/4, y) = y/2.
(c) (7 pts) u(y2/2, y) = y.

Solution: Equation (1) can be solved by the method of characteristics. Given data
along a curve (x0(τ), y0(τ), u0(τ)) for τ in some interval, we identify the characteristic
equations

dx

ds
= u, x(0, τ) = x0(τ),

dy

ds
= 1, y(0, τ) = y0(τ),

du

ds
= 1, u(0, τ) = u0(τ).

This initial value problem can be solved

x(s, τ) = 1
2s

2 + u0(τ)s+ x0(τ),

y(s, τ) = s+ y0(τ),
u(s, τ) = s+ u0(τ).

In order to obtain a unique, classical solution to eq. (1), we must be able to effect
the transformation (x(s, τ), y(s, τ)) → (s(x, y), τ(x, y)). The Jacobian of this trans-
formation is

J =

∣∣∣∣∣∣
∂x
∂s

∂y
∂s

∂x
∂τ

∂y
∂τ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
s+ u0(τ) 1

u′0(τ)s+ x′0(τ) y′0(τ)

∣∣∣∣∣∣ .



(a) The data is parameterized by

x0(τ) = τ, y0(τ) = τ, u0(τ) = 2, τ ∈ R.

Then J = s + 1 so that the transformation (x(s, τ), y(s, τ)) → (s(x, y), τ(x, y))
is invertible near the data where s = 0. A calculation gives the unique solution

u(x, y) = 1 +
√

1 + 4x− 4y,

valid so long as y < x− 1/4.
(b) The data is parameterized by

x0(τ) = τ 2, y0(τ) = 2τ, u0(τ) = τ, τ ∈ R.

Then J = s so that the transformation (x(s, τ), y(s, τ)) → (s(x, y), τ(x, y)) is
not guaranteed to be invertible near the data where s = 0. We can obtain a
formal solution using the method of characteristics

x = 1
2s

2 + τs+ τ 2, y = s+ 2τ, u = s+ τ,

which can be inverted to obtain the explicit form

u(x, y) = y

2 ±
√

4x− y2

2 .

For both signs of the radical, u(y2/4, y) = y/2, so we see that the formal solution
is not unique for the given data. Moreover, ux = ±(4x − y2)−1/2, so that the
formal solution is not even differentiable at the data.

(c) The data is parameterized by

x0(τ) = τ 2

2 , y0(τ) = τ, u0(τ) = τ, τ ∈ R.

Then J = 0 everywhere so that the transformation (x(s, τ), y(s, τ))→ (s(x, y), τ(x, y))
is not guaranteed to be invertible. The data actually lies on a characteristic curve
because

dx0

dτ
= τ = u0,

dy0

dτ
= 1, du0

dτ
= 1.

This implies that there is no unique way to “propagate” the solution off the
initial curve. The formal, characteristic solution is

x = (s+ τ)2

2 , y = s+ τ, u = s+ τ,

which depends on only one parameter s + τ . For example, u(x, y) = y and
u(x, y) = −1−

√
1 + 2x+ 2y are solutions so that the solution is not unique.



2. (Heat equation) (25 pts) State and prove the (weak) maximum principle for con-
tinuous solutions of

ut = a(x, t)uxx, x ∈ (0, 1), t ∈ (0, T ], T > 0, (2)

where a is continuous and a(x, t) ≥ a0 > 0 for all x ∈ [0, 1], t ≥ 0.
Solution: Theorem. Let UT = (0, 1) × (0, T ] and ΓT = UT \ UT be its parabolic
boundary. If u(x, t) is continous on UT , twice continously differentiable on UT , and
satisfies eq. (2), then

max
(x,t)∈UT

u(x, t) = max
(x,t)∈ΓT

u(x, t).

Proof. Let M = maxΓT u(x, t). Let v(x, t) = u(x, t) + εx2 where ε > 0. Then

vt − a(x, t)vxx = ut − a(x, t)uxx − 2ε < 0, (3)

since ut − a(x, t)uxx = 0. Suppose v has a local maximum in UT at (x0, t0) with
t0 < T . Then vt = 0 = vx = 0 and vxx ≤ 0 at (x0, t0). This implies vt− a(x, t)vxx ≥ 0
at (x0, t0). But this contradicts eq. (3) so v cannot have a maximum in the interior
of UT .
Now suppose v has a maximum on the line t = T at (x1, T ). Then vx = 0, vxx ≤ 0,
and vt ≥ 0 at (x1, T ). This implies vt − a(x, t)vxx ≥ 0, again contradicting (3).
Therefore, by continuity, the maximum of v on UT occurs on ΓT . This implies

u(x, t) + εx2 ≤ max
(y,t)∈ΓT

u(y, t) + εy2 ≤ max
ΓT

u+ ε, for all (x, t) ∈ UT ,

Then

u(x, t) ≤M + ε(1− x2) ≤M + ε.

Since ε > 0 is arbitrary, we have u(x, t) ≤M for all (x, t) ∈ UT .



3. (Fourier series)

(a) (8 points) State the Weierstrass approximation theorem with any assumptions
necessary.

(b) (17 points) Suppose f(x) is a continuous 2π periodic function. Prove that

lim
N→∞

1
N

N∑
n=1

f(2πnα) = 1
2π

∫ 2π

0
f(x)dx

for any irrational α. [Hint: prove it for einx first and then use (a)].

Solution:

(a) See book.
(b) Let α be irrational. First prove the statement for f(x) = eimx. For m = 0 both

quantities are 1. For m 6= 0 we have

1
2π

∫ 2π

0
eimxdx = 1

2mπie
imx
∣∣∣2π
0

= 0,

and

lim
N→∞

1
N

N∑
n=1

e2πinmα = lim
N→∞

1
N

e2πim(N+1)α − 1
e2πimα − 1 = 0, (4)

since the denominator is not zero since α is irrational, and the norm of the
numerator is bounded.
Now, for the given f , invoke the Weierstrass approximation theorem. Given
ε > 0, we can find a trigonometric polynomial Tε(x) such that ‖Tε − f‖∞ < ε.
Informally, the idea is that the sum of f is close to the sum of Tε, the sum of Tε
is close to the integral of Tε (by the first part), and the integral of Tε is close to
the integral of f . To make this precise, we use the triangle inequality. We have∣∣∣∣∣ 1

N

N∑
n=1

f(2πnα)− 1
2π

∫ 2π

0
f(x)dx

∣∣∣∣∣ =∣∣∣∣∣ 1
N

N∑
n=1

f(2πnα)− 1
N

N∑
n=1

Tε(2πnα)

+ 1
N

N∑
n=1

Tε(2πnα)− 1
2π

∫ 2π

0
Tε(x)dx

+ 1
2π

∫ 2π

0
Tε(x)dx− 1

2π

∫ 2π

0
f(x)dx

∣∣∣∣



Using the triangle inequality, we get∣∣∣∣∣ 1
N

N∑
n=1

f(2πnα)− 1
2π

∫ 2π

0
f(x)dx

∣∣∣∣∣ ≤
1
N

N∑
n=1
‖f − Tε‖∞

+
∣∣∣∣∣ 1
N

N∑
n=1

Tε(2πnα)− 1
2π

∫ 2π

0
Tε(x)dx

∣∣∣∣∣
+ 1

2π

∫ 2π

0
‖Tε − f‖∞dx

Using ‖Tε − f‖∞ < ε we get∣∣∣∣∣ 1
N

N∑
n=1

f(2πnα)− 1
2π

∫ 2π

0
f(x)dx

∣∣∣∣∣ ≤
2ε+

∣∣∣∣∣ 1
N

N∑
n=1

Tε(2πnα)− 1
2π

∫ 2π

0
Tε(x)dx

∣∣∣∣∣
Now, Tε(x) = ∑Mε

m=−Mε
ame

imx. We have 1
2π
∫ 2π

0 Tε(x)dx = a0, which cancels with
the corresponding term in the sum, leaving∣∣∣∣∣ 1

N

N∑
n=1

f(2πnα)− 1
2π

∫ 2π

0
f(x)dx

∣∣∣∣∣ ≤ 2ε +
Mε∑
m=1
|am|

∣∣∣∣∣ 1
N

N∑
n=1

e2πinmα
∣∣∣∣∣

+
−1∑

m=−Mε

|am|
∣∣∣∣∣ 1
N

N∑
n=1

e2πinmα
∣∣∣∣∣ .

By (4), there is an Nε, independent of |m| ≤ Mε, such that
∣∣∣ 1
Nε

∑Nε
n=1 e

2πinmα
∣∣∣ <

ε/(|am|Mε) for all m if N > Nε. Therefore, for N > Nε∣∣∣∣∣ 1
N

N∑
n=1

f(2πnα)− 1
2π

∫ 2π

0
f(x)dx

∣∣∣∣∣ ≤ 4ε,

which shows the desired limit.



4. (Wave equation) Suppose u is a smooth solution of the initial/boundary value
problem

utt − uxx = fx(x), t > 0, 0 < x < 1
u(x, 0) = h(x), ut(x, 0) = g(x), (5)
u(0, t) = u(1, t) = 0,

with f , h and g smooth and h(0) = h(1) = 0.

(a) (6 pts) Show that

d

dt

∫ 1

0
[u2
x + u2

t ]dx = 2
∫ 1

0
fx(x)utdx.

(b) (7 pts) Show that smooth solutions to the initial value problem (5) are unique.
(c) (12 pts) Show that there is a constant K, depending only on f , g, and hx, such

that ∫ 1

0
[u2
x + u2

t ]dx < K, t > 0.

(Hint: You might want to use the inequality ab ≥ −a2 − b2/4.)

Solution:

(a) Multiplying the equation by ut and integrating from 0 to 1 we get∫ 1

0
[uttut − uxxut]dx =

∫ 1

0
fx(x)utdx,∫ 1

0

[
1
2
∂

∂t
(ut)2 − uxxut

]
dx =

∫ 1

0
fx(x)utdx,

Integrating by parts,∫ 1

0

[
1
2
∂

∂t
(ut)2 + uxutx

]
dx− utux|10 =

∫ 1

0
fx(x)utdx,

Using the boundary condition ut(0, t) = ut(1, t) = 0 and recognizing the second
term in the integral as 1

2
∂
∂t

(ux)2 we get

d

dt

∫ 1

0
[u2
x + u2

t ]dx = 2
∫ 1

0
fx(x)utdx. (6)

(b) Suppose there are two such solutions u1 and u2. Then their difference w = u1−u2
satisfies

wtt − wxx = 0, t > 0, 0 < x < 1
w(x, 0) = 0, wt(x, 0) = 0,
w(0, t) = w(1, t) = 0.



Since fx ≡ 0 for this problem, d
dt

∫ 1
0 [w2

x + w2
t ]dx = 0 and the energy E(t) =

1
2
∫ 1

0 [w2
x + w2

t ]dx is constant. At t = 0, E(0) = 0 by the initial conditions and
thus E(t) = 1

2
∫ 1

0 [w2
x+ c2w2

t ]dx = 0 for all t > 0. This implies, since w is smooth,
that wx ≡ 0, wt ≡ 0 in [0, 1] and therefore w(x, t) = W , a constant that must
be 0 by the initial conditions. Therefore u1 ≡ u2.

(c) Integrating (6) in time from 0 to t, letting E(t) = 1
2
∫ 1

0 [u2
x + u2

t ]dx, we obtain

E(t)− E(0) = E(t)− 1
2

∫ 1

0
[hx(x)2 + g(x)]dx =

∫ 1

0
fx(x)(u(x, t)− h(x))dx.

Integrating by parts on the right hand side,

E(t)− 1
2

∫ 1

0
[h2
x + g]dx = f(x)(u(x, t)− h(x))

∣∣∣1
0
−
∫ 1

0
f(x)(ux(x, t)− hx(x))dx.

On the boundary, u = h = 0, so

E(t) = 1
2

∫ 1

0
[h2
x + g]dx−

∫ 1

0
f(x)(ux(x, t)− hx(x))dx,

= 1
2

∫ 1

0
[h2
x + g]dx+

∫ 1

0
fhxdx−

∫ 1

0
f(x)ux(x, t)dx,

Using the inequality −ab ≤ a2 + b2/4 for the last integral we get

E(t) ≤ 1
2

∫ 1

0
[h2
x + g]dx+

∫ 1

0
fhxdx+

∫ 1

0
f 2dx+ 1

4

∫ 1

0
ux(x, t)2dx.

Recalling E(t) = 1
2
∫ 1

0 [u2
x + u2

t ]dx and rearranging,
∫ 1

0

[
u2
x + 2u2

t

]
dx ≤ 2

∫ 1

0
[h2
x + g]dx+ 4

∫ 1

0
fhxdx+ 4

∫ 1

0
f 2dx ≡ K,

and so ∫ 1

0

[
u2
x + u2

t

]
dx ≤

∫ 1

0

[
u2
x + 2u2

t

]
dx ≤ K.



5. (Elliptic problem)

(a) (10 pts) Consider the boundary value problem in the upper half plane

uxx + uyy = 0, x ∈ R, y > 0,
u(x, 0) = f(x), x ∈ R.

Construct Green’s function for this Dirichlet problem.
(b) (5 pts) Show that if v(x, y) is harmonic, so is u(x, y) = v(x2 − y2, 2xy).
(c) (5 pts) Show that the transformation (x, y) → (x2 − y2, 2xy) maps the first

quadrant onto the upper half-plane. Hint: Use polar coordinates.
(d) (5 pts) Consider the boundary value problem in the quarter plane

uxx + uyy = 0, x > 0, y > 0,
u(x, 0) = f(x), x > 0,
u(0, y) = g(y), y > 0.

Construct Green’s function for this Dirichlet problem using your results from
(a)-(c).

Solution:

(a) The fundamental solution for Laplace’s equation in R2 is

Φ(r) = − 1
2π ln(r).

Using the method of images, the Green’s function for the upper half plane is

G(x,x′) = Φ(|x− x′|)− Φ(|x− x′∗|) = 1
2π ln

(
|x− x′∗|
|x− x′|

)

= 1
4π ln

(
(x− x′)2 + (y + y′)2

(x− x′)2 + (y − y′)2

)
,

where y′∗ = (x′,−y′) is the reflection of y′ = (x′, y′) about the line y′ = 0.
(b) Let η = x2 − y2, ξ = 2xy. Suppose vηη + vξξ = 0 then

ux = 2xvη + 2yvξ,
uxx = 2vη + 4x2vηη + 8xyvηξ + 4y2vξξ,

uy = −2yvη + 2xvξ,
uyy = −2vη + 4y2vηη − 8xyvηξ + 4x2vξξ.

Combining these results

uxx + uyy = 0,

so u(x, y) is harmonic.



(c) Suppose x = r cos θ, y = r sin θ for r > 0, 0 < θ < π/2 so that (x, y) is in the
first quadrant. Then (η, ξ) = (r2 cos 2θ, r2 sin 2θ) necessarily lie in the upper half
plane ξ > 0. Because the transformation is invertible, the converse is also true.

(d) Combining the previous results, the Green’s function for the quarter plane is

G(x,x′) = 1
4π ln

(
(x2 − y2 − x′2 + y′2)2 + (2xy + 2x′y′)2

(x2 − y2 − x′2 + y′2)2 + (2xy − 2x′y′)2

)

The same result can be obtained by the method of images with

G(x,x′) = 1
4π ln

(
[(x− x′)2 + (y + y′)2][(x+ x′)2 + (y − y′)2]
[(x− x′)2 + (y − y′)2][(x+ x′)2 + (y + y′)2]

)
.


