Preliminary Examination (Solutions): Partial Differential

Equations,
10:00 AM - 1:00 PM, Aug. 15, 2016,
Newton Lab.

Name:

There are five problems. Solve four of the five problems.
Each problem is worth 25 points. A sheet of convenient formulae

is provided.

1. (Quasi-linear equations) Consider the quasi-linear equation

Uy + utly = 1.
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In each of the following parts, solve eq. (1) subject to the given data if possible. State
the region in the x-y plane where the solution is classical and is unique. If it is not

possible to obtain a unique, classical solution, state why.
(a) (10 pts) u(z,z) = 2.
(b) (8 pts) u(y®/4,y) = y/2.
(c) (7 pts) u(y?/2,y) =y

Solution: Equation (1) can be solved by the method of characteristics. Given data
along a curve (x¢(7),yo(7), uo(7)) for 7 in some interval, we identify the characteristic

equations
Ci: =u, z(0,7)=x0(7),
V=1 407 =o(r),
(jlz =1, u(0,7)=ug(7).
This initial value problem can be solved
x(s,T) = ;SQ + up(7)s + xo(T),

y(877—> =s+ yO(T)7
u(s, ) = s+ up(7).

In order to obtain a unique, classical solution to eq. (1), we must be able to effect
the transformation (z(s,7),y(s, 7)) — (s(z,y),7(z,y)). The Jacobian of this trans-

formation is

g % % B 8+U0(T)
2 % |7 | up(r)s+ah(r) o

1
(7)




(a)

The data is parameterized by
CCO<7—) =T, y0(7—> =T, uO(T) = 27 TeR.

Then J = s+ 1 so that the transformation (z(s,7),y(s, 7)) — (s(z,y),7(x,y))
is invertible near the data where s = 0. A calculation gives the unique solution

u(z,y) =141+ 4z — 4y,

valid so long as y < = — 1/4.
The data is parameterized by

xo(T) = 72, yo(T) =271, wup(r)=71, TER.

Then J = s so that the transformation (x(s,7),y(s,7)) — (s(x,y),7(x,y)) is
not guaranteed to be invertible near the data where s = 0. We can obtain a
formal solution using the method of characteristics

1
:v:§<92+73+72, Yy=s4+21, u=s+r,

which can be inverted to obtain the explicit form

VI
7

+

Yy

For both signs of the radical, u(y?/4,y) = y/2, so we see that the formal solution
is not unique for the given data. Moreover, u, = +(4x — y?)~'/2, so that the
formal solution is not even differentiable at the data.

The data is parameterized by

yo(t) =7, wup(r)=71, TER.

Then J = 0 everywhere so that the transformation (z(s, 7),y(s, 7)) = (s(x,y), 7(z,v))

is not guaranteed to be invertible. The data actually lies on a characteristic curve

because
dxg dy[) dug

— =T=u - =1, —

dr O dr Todr
This implies that there is no unique way to “propagate” the solution off the
initial curve. The formal, characteristic solution is

=1.

(s +7)2
xziz , Yy=s+71, u=s+4r7,

which depends on only one parameter s + 7. For example, u(z,y) = y and
u(z,y) = —1 — /T + 2x + 2y are solutions so that the solution is not unique.



2. (Heat equation) (25 pts) State and prove the (weak) maximum principle for con-
tinuous solutions of

u = a(x, t)u,,, =€ (0,1), te(0,T], T>0, (2)

where a is continuous and a(z,t) > ag > 0 for all z € [0,1], ¢t > 0.

Solution: Theorem. Let Ur = (0,1) x (0,7] and I'r = Uz \ Ur be its parabolic
boundary. If u(z,t) is continous on Ur, twice continously differentiable on Ur, and
satisfies eq. (2), then

max u(z,t) = max u(x,t).
(z,t)eUr (z,t)elr

Proof. Let M = maxr, u(z,t). Let v(z,t) = u(z,t) + ex? where € > 0. Then
v — a2, )V = Uy — a(x, t)ug, — 26 < 0, (3)

since u; — a(z,t)u, = 0. Suppose v has a local maximum in Ur at (xg,ty) with
to <T. Then v; = 0 = v, = 0 and v,, < 0 at (g, o). This implies v, — a(x,t)vy, > 0
at (xo,tp). But this contradicts eq. (3) so v cannot have a maximum in the interior

of UT-

Now suppose v has a maximum on the line ¢ = T at (x1,7). Then v, = 0, vy, <0,
and v, > 0 at (zq,7"). This implies v; — a(z, t)v,, > 0, again contradicting (3).

Therefore, by continuity, the maximum of v on Uz occurs on I'y. This implies

u(z,t) +ex? < max u(y,t) +ey? <maxu+e forall (z,t) € Ur,
(y,t)el'r Tr

Then
u(z,t) <M +e(l—2*) < M +e.

Since € > 0 is arbitrary, we have u(x,t) < M for all (z,t) € Ur.



3. (Fourier series)

(a) (8 points) State the Weierstrass approximation theorem with any assumptions
necessary.

(b) (17 points) Suppose f(z) is a continuous 27 periodic function. Prove that

N—o0

lim Jbéf@ﬂna) = 217T /027r f(x)dx

for any irrational «. [Hint: prove it for € first and then use (a)].
Solution:

(a) See book.

(b) Let a be irrational. First prove the statement for f(x) = ¢"™*. For m = 0 both
quantities are 1. For m # 0 we have

1 /Qﬂ zm:cd 1 M
-— e r = —¢€
21 Jo 2mmi

27
0 =0,

and

1 e2ﬂ'im(N+1)a -1

: 1 al 2minmao .
oy e S N e @

since the denominator is not zero since « is irrational, and the norm of the
numerator is bounded.

Now, for the given f, invoke the Weierstrass approximation theorem. Given
e > 0, we can find a trigonometric polynomial T,(z) such that |7, — || < €.
Informally, the idea is that the sum of f is close to the sum of T;, the sum of T,
is close to the integral of T, (by the first part), and the integral of T is close to
the integral of f. To make this precise, we use the triangle inequality. We have

1 N 1 ror
‘an_:lf(%ma) - %/0 f(zx)dx| =
1 1
— Y f(2mna) — = > T.(2mna)
1 N 1 g2
+ N ;Te(%ma) - %/0 (x)dx
1 27rT d 1 2m d
to- [ T@)de = o [T f(@)da




Using the triangle inequality, we get
1 N 1 g2
an:;f(%ma) - %/0 f(x)dx| <
1N
¥ 2 - Tl

1 N 1 yor
‘N; (2mnao) _%/0 T.(x)dx

2w
— T — fllood
e e

Using ||T: — flloo < € we get

1 N 1 g2
‘an::lf(%moz) - 77?/0 (x)dx| <
1 N 1 jor
26+|N7;T6(27ma)_27r/0 T.(z)dx

Now, T.(z) = YNy ame™. We have & [*7 T.(z)dx = ao, which cancels with

the corresponding term in the sum, leaving

<2€+Z || |~

J A
Z 627r'mma
n:l

1 X,
+ Z ’am‘ il Z 627rznma )
m:_Me N’flil

Zf27ma——/ f(z)dx

By (4), there is an N, independent of |m| < M., such that ‘Ni SN e%mmo“ <
€/(|am| M) for all m if N > N.. Therefore, for N > N,

< de,

1 N 1 jor
an::lf(%ma) - %/0 f(x)dx

which shows the desired limit.



4. (Wave equation) Suppose u is a smooth solution of the initial/boundary value
problem

Uy — Ugg = fulT), t>0, 0<x<1
u(z,0) = h(z), u(z,0) = g(), (5)
u(0,t) = u(1l,t) =0,

with f, h and g smooth and h(0) = h(1) = 0.
(a) (6 pts) Show that

1 1
jt/ [u? + u?ldx = 2/ fo(2)upde.
0 0

(b) (7 pts) Show that smooth solutions to the initial value problem (5) are unique.

(c) (12 pts) Show that there is a constant K, depending only on f, g, and h,, such
that

1
/ [u2 +uf]dr < K, t>0.
0

(Hint: You might want to use the inequality ab > —a? — b?/4.)

Solution:

(a) Multiplying the equation by u; and integrating from 0 to 1 we get

1 1
/0 [ty — Ugptty]dx :/0 fo(x)upde,

119 :
/0 l28t(ut)2 - Ua:acut‘| dr = /0 fo(x)udz,

Integrating by parts,

1110 9 [
/0 lQat(ut) +uxutx] dr — ugtgy _/0 fo(w)wdz,

Using the boundary condition u,(0,t) = w;(1,t) = 0 and recognizing the second

term in the integral as 12 (u,)? we get
d ol 1
il / W2 + u?]de = 2 / fol@)updz. (6)
dt Jo 0
(b) Suppose there are two such solutions u; and uy. Then their difference w = uy —us
satisfies
wtt—wmzo, t>0, O<z<l1
w(z,0) =0, wy(x,0) =0,

w(0,t) =w(l,t) = 0.



Since f, = 0 for this problem, £ [J[w? + w?]dz = 0 and the energy E(t) =
1 Jo[w? 4+ w?]dz is constant. At t = 0, E(0) = 0 by the initial conditions and
thus E(t) = 1 fo [w? + 2w?)dx = 0 for all t > 0. This implies, since w is smooth,
that w, = 0, w; = 0 in [0, 1] and therefore w(z,t) = W, a constant that must

be 0 by the initial conditions. Therefore u; = u,.

Integrating (6) in time from 0 to ¢, letting E(t) = 1 [ [u2 + u?]dz, we obtain

1 1

B(t) - B(0) = B(t) - ; [

[ha (@) + g(z)]dz = /01 fo(@)(u(z, 1) = h(z))de.

Integrating by parts on the right hand side,

B(0) — 5 [ 102+ gldz = Fa) uta, ) — )|~ [ F@) e, t) = halw)de

On the boundary, u =h = 0, so

1
0

- ;/Ol[hi + gldx + /01 fhydr — /01 f(x)u(z, t)d,

B(t) = 5 [ 102+ gldr — [ f@) el 0) — hul)d,

Using the inequality —ab < a® + b?/4 for the last integral we get
1 /1 1 1 1 1
E(t) < - / 72 + glda + / Fhods + / o / up (. 1)2de.
2 Jo 0 0 4 Jo
Recalling E(t) = 3 [y [u2 + u?]dz and rearranging,
1 1 1 1
/ {ui—i—?uﬂ dr < 2/ [hi—i—g]dx—i—él/ fhxdx+4/ frdr = K,
0 0 0 0

and so

1 1
uy +uy | dr < uy + 2u; | doe < K.
/0 [2 2} /0 [2 2}



5. (Elliptic problem)
(a) (10 pts) Consider the boundary value problem in the upper half plane

Upe +Uyy =0, Tz €R, y>0,
u(z,0) = f(z), zeR.
Construct Green’s function for this Dirichlet problem.
(b) (5 pts) Show that if v(z,y) is harmonic, so is u(z,y) = v(z? — y?, 2zy).

(c) (5 pts) Show that the transformation (z,y) — (z* — y?, 2zy) maps the first
quadrant onto the upper half-plane. Hint: Use polar coordinates.

(d) (5 pts) Consider the boundary value problem in the quarter plane
Upe + Uyy =0, >0, y>0,
u(z,0) = f(z), x>0,
u(0,9) = 9(y), y >0

Construct Green’s function for this Dirichlet problem using your results from
(a)-(c).

Solution:

(a) The fundamental solution for Laplace’s equation in R? is
1
O(r) = —— In(r).

21

Using the method of images, the Green’s function for the upper half plane is
/ / 1% 1 ’X B X,*’
G(x,x')=Po(|x —x'|) — P(|x —x"|) = 2—ln R TS
i

T P ooy s

 Arn
where y"™* = (2/, —1/) is the reflection of y’ = (2/,y') about the line 3y = 0.

(b) Let n = a? — y?, & = 2xy. Suppose v, + vge = 0 then

Uy = 220, + 2yvg,

Uy = 20y + 420y + 8TYVUye + 4y Ve,
Uy = —2yv, + 2x0¢,

Uyy = —20, + 4y2v,777 — 8TYVpe + 43:21155.

Combining these results
Ugg + Uyy = 0,

so u(x,y) is harmonic.



(¢) Suppose z = rcosf, y = rsinf for r > 0, 0 < § < 7/2 so that (z,y) is in the
first quadrant. Then (n, &) = (r? cos 20, r? sin 20) necessarily lie in the upper half
plane £ > 0. Because the transformation is invertible, the converse is also true.

(d) Combining the previous results, the Green’s function for the quarter plane is

1 ((1’2 _ y2 _ I/2 + y/2)2 + (Qxy 4 2x’y’)2>

G N =-—"1
(X>X) A n (x2 — 2 — y/2>2 + (2:1:y _ 2x’y’)2

The same result can be obtained by the method of images with

Lo (lle—aP+ y+y)Pll=+2) + (y - y’)2]>

G(x,x')=—In (

4 \ [z =22+ (y — v)l(@ + 2) + (y + v/')?]



