
Department of Applied Mathematics

Preliminary Examination in Numerical Analysis

January, 2020

Instructions. You have three hours to complete this exam. Submit solutions to four
(and no more) of the following six problems. Please start each problem on a new page.
You MUST prove your conclusions or show a counter-example for all problems unless
otherwise noted. Write your student ID number (not your name!) on your exam.

1. Root Finding. Consider the equation ex = sinx.

(a) Show that there is a solution x∗ ∈ (−5
4π,−π).

(b) Consider the following iterative methods (i) xk+1 = ln(sinxk) and (ii) xk+1 = arcsin(exk).
What can you say about the local convergence of each of the methods for x∗ as in (a)
and their convergence order? If you use a theorem give its precise statement.

(c) For x∗ as in (a) give a method that is quadratically convergent. Justify why the method
is quadratically convergent.

Solution:

(a) For x < 0. 1/(1 − x) > ex and for all x ex > 0. Since

sin(−5π/4) = 1/
√
2 > 1/(1 + 5π/4) > e−

5π
4 ,

and sin(−π) = 0 and since the functions are continuous the intermediate value theorem
guarantees the existence of a root.

(b) Writing the iterations as xk+1 = g(xk) we have that for the first iteration |g′(x)| =

| cos(x)sin(x) | > 1 for x ∈ (−5
4π,−π) so there is no convergence to the root inside that interval.

For the second iteration we have that

|g′(x)| = | ex√
1− e2x

| < 1,

on the interval under consideration. However as arcsin is only defined for x ∈ [−π/2, π/2]
the iteration cannot find this root. Note that there is no root to the equation inside
[−π/2, π/2].
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(c) Use Newton’s method on f(x) = ex − sin(x). Use arguments similar to those in (a) to
argue that f ′(x) 6= 0 for x ∈ [−π/2, π/2].

2. Linear Alegbra.

(a) Let A be a real n× n matrix with distinct eigenvalues such that

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn| ≥ 0

with corresponding eigenvectors {vj}nj=1.

The power iteration is given by zm = σm
A
m
z0

‖Am
z0‖∞

where σm = ±1. Prove that the power

iteration converges to (±1) v1

‖v1‖∞
.

(b) Consider the Eudoxos iteration with initial guess x0 = y0 = 1 given by

xn+1 = xn + yn

yn+1 = xn+1 + xn.

Rewrite the iteration as a linear system iteration. In other words, rewrite the iteration

as

[
xn+1

yn+1

]

= A

[
xn
yn

]

.

(c) Using the result from the power iteration, prove that the ratio yn
xn

converges to
√
2.

Solution:

(a) The power iteration has mth iterate

A
m
z0 =

n∑

j=1

αjA
m
vj

=
n∑

j=1

αjλ
m
j vj

= λm
1



α1v1 +

n∑

j=2

αj

(
λj

λ1

)m

vj





Note that as m → ∞,
(
λj

λ1

)m

→ 0 for 2 ≤ j ≤ n.

Then ‖Am
z0‖∞ ∼ |λ1|m|α1|‖v1‖∞ . So

lim
m→∞

A
m
z0

‖Am
z0‖∞

= lim
m→∞

(
λ1

|λ1|

)m α1v1

|α1|‖v1‖∞
= ±1

v1

‖v1‖∞
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(b) We need to rewrite yn+1 so that it does not involve xn+1. We do this by simply plugging
in the definition of xn+1 to find yn+1 = 2xn + yn.
Then the linear system iteration is

[
xn+1

yn+1

]

=

[
1 1
2 1

] [
xn
yn

]

.

(c) We know that the power iteration converges to the eigenvector corresponding to the
largest (in magnitude) eigenvalue. For our system, the largest eigenvalue is 1+

√
2 with

corresponding eigenvector v1 = ±
[

1√
2

]

. Thus yn
xn

→
√
2.

3. Numerical quadrature. Consider the task of numerically approximating

I(f) =

∫ b

a

f(x)dx,

where f ∈ C∞[a, b].

(a) Derive the trapezoidal rule and corresponding error for approximating I(f).

Useful information:
∫ b

a
(x− a)(x− b)dx = −1

6(b− a)3.

(b) Find the formula for the composite trapezoidal rule using uniform intervals of size
h = b−a

n
where n+ 1 is the number of quadrature points. i.e. the quadrature points are

xj = a+ jh for j = 0, . . . , n.

(c) Derive the error for the composite trapezoidal rule.

Solution:

(a) The trapezoidal rule is based on integrating the linear interpolation with interpolation
points x0 = a and x1 = b. Using this information, we use Taylor’s Theorem with a
modified Lagrange remainder term to rewrite f(x) as

f(x) = f(a)
x− b

a− b
+ f(b)

x− a

b− a
+

f ′′(ηx)

2
(x− a)(x− b)

for some ηx ∈ [a, b].
Integrating the linear approximation we find that the trapezoidal rule is given by

I1(f) =

∫ b

a

[

f(a)
x− b

a− b
+ f(b)

x− a

b− a

]

=
f(a) + f(b)

2
(b− a).

The error in approximating the integral using the trapezoidal rule has an upper bound
given by

E1(f) = I(f)− I1(f) = −
∫ b

a

f ′′(ηx)

2
(x− a)(x− b)dx

= −f ′′(η)
(b− a)3

12
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for some η ∈ [a, b] by the mean value theorem. (See for example Chapter 1 Thm
1.3 of Atkinson Numerical Analysis text.) The trapezoidal rule is given by I1(f) =
f(a)+f(b)

2 (b− a) and the error term is E1(f) = −f ′′(η) (b−a)3

12 .

(b) In(f) = h
[
f(x0)

2 + f(x1) + · · ·+ f(xn−1) +
f(xn)

2

]

(c)

En(f) ≤ I(f)− In(f) =
−h3

12

n∑

j=1

f ′′(ηj)

=
−h3n

12




1

n

n∑

j=1

f ′′(ηj)





=
−h3n(b− a)

12(b − a)




1

n

n∑

j=1

f ′′(ηj)





We know that

min
x∈[a,b]

f ′′(x) ≤ 1/n

n∑

j=1

f ′′(ηj) ≤ max
x∈[a,b]

f ′′(x).

Since f ′′(x) is continuous in [a, b], there exists an η ∈ [a, b] such that

1/n
n∑

j=1

f ′′(ηj) = f ′′(η).

Thus En(f) =
−h2(b−a)

12 f ′′(η) for some η ∈ [a, b].

4. Interpolation/Approximation. Consider the Hermite problem of constructing a polyno-
mial p(x) of degree ≤ 3 such that

p(x1) = y(x1) p′(x1) = y′(x1) p(x2) = y(x2) p′(x2) = y′(x2).

(a) Derive a Lagrange type formula for p(x). (Hint: For the basis functions satisfying
l(x2) = l′(x2) = 0, use l(x) = (x − x2)

2g(x), where g(x) is a polynomial of degree ≤ 1.
Find g(x). )

(b) Derive an error formula.

(c) Prove that the interpolation is unique.

Solution:

(a) Our goal is write p(x) = y1l1(x) + y2l2(x) + y′1l3(x) + y′2l4(x) We need to create 4 basis
functions. First we will create l1(x) which satisfies l1(x1) = 1, l′1(x1) = 0, l′1(x2) = 0 and
l1(x2) = 0.
Utilizing the hint, we write l1(x) = (x − x2)

2(ax + b) where a and b are constants to
be determined. This choice of representing l1 already satisfies the last two conditions.
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So we need to chose a and b so that l1 satisfies the first two conditions. After some

algebra you find a = 2
(x1−x2)3

and b = −(x1+x2)
(x1−x2)2

. Thus l1(x) =
(x−x2)2

(x1−x2)3
(2x − (x1 + x2)).

Through the same process, we know l2(x) =
(x−x1)2

(x2−x1)3
(2x−(x1+x2)). Now we create l3(x)

which satisifies l3(x1) = 0, l′3(x1) = 1, l3(x2) = 0, and l′3(x2) = 0. As for the previous
basis function, we set l3(x) = (x−x2)

2(ax+ b). The constants a and b which make l3(x)

satisfy all the conditions are a = 1
(x1−x2)2

and b = −x1

(x1−x2)2
. Thus l3(x) =

(x−x2)2

(x1−x2)2
(x−x1).

Through the same process, l4(x) =
(x−x1)2

(x2−x1)2
(x− x2).

(b) The Taylor remainder theorem gives the error formula

E =
f (4)(η)

4!
(x− x1)

2(x− x2)
2.

for some η ∈ (x1, x2).

(c) Suppose there are two distinct polynomials p(x) and q(x) of degree ≤ 3 that satisfy the
four conditions. Let w(x) = p(x)− q(x). Then w(x) is also a polynomial of degree ≤ 3
and we know w(x1) = w(x2) = w′(x1) = w′(x2) = 0. This means that x1 and x2 are
double roots of w(x). The only way a polynomial of degree ≤ 3 can have more than 3
roots is if it is the zero function; i.e. w(x) = 0. Thus p(x) = q(x) which contracts the
assumption that there are distinct interpolation polynomials.

5. ODEs Consider the one-step method applied to IVP y′ = f(t, y),

yn+1 = yn + αhf(tn, yn) + βhf(tn + γh, yn + γhf(tn, yn))

where α, β, γ are real parameters.

(a) Prove that the method is consistent if and only if α+β = 1, and the order of the method
cannot exceed 2.

(b) Suppose that a second-order method of the above form is applied to the initial value
problem y′ = −λy, y(0) = 1, where λ is a positive real number. Show that the sequence
(yn)n≥0 is bounded if and only if h ≤ 2

λ
. Show further that for such h,

|y(tn)− yn| ≤
1

6
λ3h2tn, n ≥ 0.

Solution (a)
Expand

yn+1 = yn + αhf + βh[f + γhft + γhffy +
1

2

(
γ2h2ftt + 2γ2h2ffty + γ2h2f2fyy + . . .

)

= yn + (α+ β)hf + h2βγ(ft + ffy) + h3
βγ2

2
[ftt + 2ffty + f2fyy] + . . . .

The exact solution satisfies

y(tn+1) = yn + hf +
h2

2
[ft + ffy] +

h3

6
(ftt + 2ftyf + fyft + fyyf

2 + f2
y f).

Consistency requires α + β = 1 and second order accuracy 2βγ = 1. Third order cannot be
achieved since the higher order terms do not match.
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Solution (b)
Plug in the right hand side to find

yn+1 = yn − αhλyn + βh(−λ(yn − λγhyn)) = (1− (α+ β)hλ+ βγh2λ2)yn.

We know that for second order we require α + β = 1 and 2βγ = 1 so that in order for the
sequence to be bounded

|1− z +
z2

2
| ≤ 1, z = hλ.

Thus

−1 ≤ 1− z +
z2

2
≤ 1.

or
z2

2
− z ≤ 0 ⇒ z ≥ 0, z ≤ 2.

That is h ≤ 2
λ
.

To find the error estimate note that y(t) = e−λt so that

y(tn)− yn = e−λtn − (1− hλ+
h2λ2

2
)n = (e−λh)n − (1− hλ+

h2λ2

2
)n.

Recall that

xn − yn = (x− y)
n∑

i=1

xn−iyi−1,

so that

|y(tn)− yn| =

∣
∣
∣
∣
∣
∣
∣
∣

(

e−λh − (1− hλ+
h2λ2

2
)

) n∑

i=1

(e−λh)n−1(1− hλ+
h2λ2

2
)i−1

︸ ︷︷ ︸

≤1

∣
∣
∣
∣
∣
∣
∣
∣

≤ h3λ3

6
n =

h2λ3

6
tn.

6. PDEs Consider the approximation vj ≈ u(xj , t) on the grid xj = jh, h = 2π/(N + 1),
j = 1, . . . , N + 1, to the solution of the advection equation ut + ux = 0 on the 2π-periodic
domain 0 ≤ x ≤ 2π and with initial data u(x, 0) = exp(−(x− π)2).

Define difference operators acting on a grid function vi as

D−vj =
vj − vj−1

h
, D+vj =

vj+1 − vj
h

, D0vj =
vj+1 − vj−1

2h
.

Further define the inner product (v,w)h =
∑n

i=1 hviwi and the norm ‖v‖2h = (v, v)h.

(a) Two of the three semi-discretizations

(1) :
dvj
dt

+D−vj = 0, (2) :
dvj
dt

+D+vj = 0, (3) :
dvj
dt

+D0vj = 0,

are stable and produce the results in the figures below when evolved one period in time
using the classic fourth order Runge-Kutta method. Which method is not stable? For
the remaining two methods, what method goes with what figure? Clearly motivate your
answer.
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Figure B

Solid lines represents the numerical solution and dashed lines the exact solution.

(b) Let D denote one of the difference operators above. Then if we discretize in time using
the trapezoidal rule we have (the superscript now denotes the time index)

vn+1
j − vnj

∆t
+D

(

vn+1
j + vnj

2

)

= 0.

Show that with this timestepping the spatial discretization corresponding to “Figure A”
satisfies ‖vn+1‖2h = ‖vn‖2h while the discretiztion corresponding to “Figure B” satisfies
‖vn+1‖2h ≤ ‖vn‖2h. Hint: First find α+ and / or α− such that D±vj = D0vj+α±D+D−vj .

Solution (a):
The continuous problem can be treated by Fourier series. Assume that the expansion of the
initial data is

u(x, 0) =
∞∑

k=−∞

ûke
ikx,

Then each mode solves the ordinary differential equation

dûk
dt

+ λkûk = 0,

with λk = ik being purely imaginary indicating that there is no decay but only translation of
the initial data.
Now, as the discrete problem is periodic the complex exponential basis eikjh diagonalizes the
semi discrete problems. The three operators D−, D+ and D0 thus satisfy

hD−e
ikx = (1− eikh)eikx, hD+e

ikx = (eikh − 1)eikx, hD0e
ikx = i sin(kh)eikx,

and the discrete modes satisfy

dûk
dt

+
(1− eikh)

h
ûk = 0,

dûk
dt

+
(eikh − 1)

h
ûk = 0,

dûk
dt

+
i sin(kh)

h
ûk = 0.

Since the “λ’s” will lie in the right half plane, the left half plane and on the imaginary axis,
respectively the first and the last (denoted by (1) and (3)) schemes will be stable. The first
scheme will be dissipative and produces the small amplitude solution in Figure B. The last
(centered) scheme has errors that are purely dispersive and belongs to Figure A.
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Solution (b):
Multiply by vn+1

i + vni and sum to find

‖vn+1‖2h − ‖vn‖2h +
∆t

2
(vn+1 + vn,D(vn+1 + vn))h = 0.

First note that for any periodic grid functions r, s we have (r,D0s) = −(D0r, s) (just write
out the expressions term by term and use the boundary conditions) so that

(vn+1 + vn,D0(v
n+1 + vn))h = 0,

and the first part follows.

Second, as indicated by the hint, we have the identity

D−vj = D0vj −
h

2
D+D−vj .

The second part then follows by noting that (r,D+s) = −(D−r, s) so that for scheme (1) we
have

‖vn+1‖2h − ‖vn‖2h +
∆th

4
(D−(v

n+1 + vn),D−(v
n+1 + vn))h = 0.

The

‖vn+1‖2h = ‖vn‖2h − ∆th

4
‖D−(v

n+1 + vn)‖2h.
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